
T H E U N I V E R S I T Y O F T U L S A
THE GRADUATE SCHOOL

COLLECTIVE ADAPTATION:
THE SHARING OF BUILDING BLOCKS

by
Thomas Dunlop Haynes

A dissertation submitted in partial fulfillment of
the requirements for the degree of Doctor of Philosophy

in the Discipline of Computer Science
The Graduate School

The University of Tulsa
1998



T H E U N I V E R S I T Y O F T U L S A
THE GRADUATE SCHOOL

COLLECTIVE ADAPTATION:
THE SHARING OF BUILDING BLOCKS

by
Thomas Dunlop Haynes

A DISSERTATION
APPROVED FOR THE DISCIPLINE OF

COMPUTER SCIENCE

By Dissertation Committee

, Chairperson

ii



COPYRIGHT STATEMENT

Copyright c© 1998 by Thomas Dunlop Haynes

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechan-
ical, photocopying, recording, or otherwise, without the prior written permission
of the author.

iii



ABSTRACT

Haynes, Thomas Dunlop (Doctor of Philosophy in Computer Science)
Collective Adaptation: The Sharing of Building Blocks

(178 pp. Chapter XIII)
Directed by Professor Sandip Sen

(431 words)

Weak search heuristics utilize minimal domain knowledge during the search

process. Genetic algorithms (GA) and genetic programming (GP) are population

based weak search heuristics which represent candidate solutions as chromosomes.

The Schemata Theorem forms the basis of the theory of how GAs process building

blocks during the domain independent search for a solution to a given problem.

Building blocks are templates describing subsets of the chromosome which have a

small defining length and are highly fit. The main differences between typical GP

and GA implementations are a variable length tree versus a fixed length linear

string representation and a n-ary versus a binary alphabet. A consequence of the

differences is that what constitutes a building block has been difficult to answer

for GP and has led to theories that the Schemata Theorem does not hold for GP.

This thesis defines building blocks to be coding segments, which are those

subsets of the chromosome that contribute fitness to the evaluation of the chro-

mosome. Building blocks can be extracted from chromosomes and stored in a

collective memory, which becomes a repository of partial solutions for both re-

cently discovered building blocks and those discovered earlier. The contributions

of this thesis are the mechanisms by which building blocks can be effectively shared

both inside and outside chromosomes.

iv



The duplication of building blocks inside a chromosome is shown to increase

the exploratory power of the weak search heuristics. The perturbation of a can-

didate solution will affect one copy of the building blocks and if the fitness of the

perturbed copy is not better than the original, the duplicate copies may still main-

tain the overall fitness of the chromosome. The duplication of coding segments

is significant in finding better partial solutions with the following weak search

heuristics: GP, GA, random search (RS), hill climbing (HC), and simulated an-

nealing (SA). Each algorithm is systematically validated in the clique detection

domain against a particular family of graphs, which have the properties that the

set of partial solutions is known, the set of partial solutions is larger than viable

chromosome lengths, and pruning algorithms are not effective.

Collective adaptation is the addition of the collective memory to the weak

search heuristic. The solution no longer has to be found inside the chromosomes;

the chromosomes can collectively contribute partial solutions such that the overall

solution is formed inside the collective memory. Strong search heuristics can ex-

tend the partial solutions inside the collective memory and these partial solutions

can be transfered back into the chromosomes. The thesis empirically demon-

strates that collective adaptation finds significantly better partial solutions with

weak search heuristics (GP, GA, RS, HC, and SA).

v



ACKNOWLEDGMENTS

The first year of my doctoral studies were supported by Roger Wainwright

and his OCAST Grant AR2004. The second year of my doctoral studies were

supported by a departmental teaching assistantship and Sandip Sen and his NSF

Research Initiative Award IRI–9410180. The third year of my doctoral studies

were supported in part by the Department of Mathematics and Computer Science,

the University of Missouri, St. Louis, St. Louis, MO. The fourth year of my

doctoral studies were supported in part by equipment provided by the Department

of Computer Science, Wichita State University, Wichita, KS.

I would like to thank my committee members for the invaluable help they

have provided: Roger Wainwright for getting me started in genetic programming,

Dale Schoenefeld for both introducing me to Garvey and Johnson and opening

up the door to the detection of cliques in a graph, Peyton Cook for making me

reevaluate my feeling towards mathematics, and Theresa Shaft for reminding me

that other fields have different expectations towards research. Both Peyton and

Theresa were instrumental in my statistical analysis of my data, but all errors, if

any, are my own.

I would also like to thank Sandip Sen for serving as my advisor. While Sandip

prefers multiagent learning over genetic algorithms, we were still able to bridge

the gap between the two.

My wife, Stacy Lynn Champaign Haynes, has been my main source of inspira-

tion during my doctoral studies. Her presence in my life has fostered confidence

vi



that I lacked before I knew her.

Finally there is my son, Morgan William Haynes, who has taught me that

responsibility is full-time job. While he gives his love freely to me, I earn it by

giving mine freely to him.

Parts of Section 1.3 and Section 2.3 appeared as Thomas Haynes, Dale Schoene-

feld and Roger Wainwright, “Type Inheritance in Strongly Typed Genetic Pro-

gramming”, in Kenneth E. Kinnear, Jr. and Peter J. Angeline, editors, Advances

in Genetic Programming 2, chapter 18, MIT Press, 1996.

Parts of Chapter 2 appeared as 1) Thomas Haynes, “Clique Detection via

Genetic Programming”, Technical Report UTULSA-MCS-95-02, The University

of Tulsa, April 24, 1995; 2) Thomas Haynes and Dale Schoenefeld, “Clique De-

tection via Genetic Programming”, Technical Report UTULSA-MCS-96-05, The

University of Tulsa, March 15, 1996; and 3) Thomas Haynes and Dale Schoene-

feld, “Clique Detection via Genetic Programming”, In John R. Koza, David E.

Goldberg, David B. Fogel, and Rick L. Riolo, editors, Proceedings of the First

Genetic Programming Conference, 1996.

Parts of Chapter 3 appeared in Thomas Haynes, “Duplication of Coding Seg-

ments in Genetic Programming” in the Proceedings of the Thirteenth National

Conference on Artificial Intelligence, August, 1996. I want to thank Cory Hoelt-

ing for some discussions on this research in Chapter 3. I thank Justinian Rosca of

the University of Rochester, Sandip Sen of the University of Tulsa, and Annie Wu

of the University of Michigan for reviews of that paper. The comments supplied

vii



by the anonymous referees were also appreciated. I also thank Mark Lindsay for

allowing me access to workstations in his computer lab.

Parts of Chapter 4 and 5 appeared as 1) Thomas Haynes, “Collective Mem-

ory Search”, in Barrett Bryant, Janice Carroll, Dave Oppenheim, Jim Hightower,

and K. M. George, editors, Proceedings of the 1997 ACM Symposium on Applied

Computing, 1997; 2) Thomas Haynes, “Augmenting Collective Adaptation with

a Simple Process Agent”, in Sandip Sen, editor, AAAI Workshop on Multiagent

Learning, 1997; 3) Thomas Haynes, “On-line Adaptation of Search via Knowledge

Reuse”, in John R. Koza and Kalyanmoy Deb and Marco Dorigo and David B.

Fogel and Max Garzon and Hitoshi Iba and Rick L. Riolo, editors, Genetic Pro-

gramming 1997: Proceedings of the Second Annual Conference, 1997; 4) Thomas

Haynes, “A Comparison of Random Search versus Genetic Programming as En-

gines for Collective Adaptation”, in V. William Porto, editor, Proceedings of the

Seventh International Conference on Evolutionary Programming, 1998.

Parts of Appendix G appeared as Thomas Haynes, “Phenotypical Building

Blocks for Genetic Programming”, in Thomas Bäck, editor, Proceedings of the

Seventh International Conference on Genetic Algorithms, 1997.

viii



TABLE OF CONTENTS

Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Copyright Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

CHAPTER I: Genetic Programming 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Strongly Typed Genetic Programming . . . . . . . . . . . . . . . 4
1.3 Type Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Generic Functionality . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Modifying STGP . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER II: Clique Detection 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Prior Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Implementing Type Inheritance . . . . . . . . . . . . . . . . . . . 19

2.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 A GA Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER III: Duplication of Coding Segments 24
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Non–coding Segments . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Repair and Duplication . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Simple Repair . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Repair with Duplication . . . . . . . . . . . . . . . . . . . 33
3.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 35
3.5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

CHAPTER IV: Collective Intelligence 40
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Collective Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ix



4.3 Computational Agent Society . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Extracting Partial Solutions from the Chromosomes . . . . 51

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

CHAPTER V: Exploiting an Information Center for Exploration 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Passive–Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Active–Process Agents . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Random Search versus Genetic Programming . . . . . . . . . . . . 66

5.4.1 Thought Experiment . . . . . . . . . . . . . . . . . . . . . 69
5.4.2 Fully Connected Graph of Size 16 . . . . . . . . . . . . . . 72
5.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Transfer of Control Knowledge . . . . . . . . . . . . . . . . . . . . 76
5.5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6.1 Lessons in Scaling . . . . . . . . . . . . . . . . . . . . . . . 81
5.6.2 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . 82

CHAPTER VI: Collective Adaptation in Search Heuristics 84
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 FC Family of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Testing Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.5 The Base Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5.1 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.6 Duplication of Coding Segments . . . . . . . . . . . . . . . . . . . 98
6.6.1 The Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.6.2 Varying GA Repair Rate . . . . . . . . . . . . . . . . . . . 102

6.7 Collective Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.7.1 The Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.7.2 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . 108
6.7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.8 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . 112
6.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

CHAPTER VII: Conclusions 119

CHAPTER VIII:Future Work 122

BIBLIOGRAPHY 125

x



APPENDIX A: Data for Base Heuristics 133

APPENDIX B: Data for Duplication of Coding Segments Heuris-
tics 136

APPENDIX C: Data for Varying the Repair Rate for GA 140

APPENDIX D: Data for Collective Adaptation and Duplication
of Coding Segments for Heuristics 146

APPENDIX E: Data for Varying Collective Adaptation for GA 151

APPENDIX F: Data for Investigating GP and FC graphs 156

APPENDIX G: Phenotypical Building Blocks 162
G.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
G.2 Building Blocks and GP . . . . . . . . . . . . . . . . . . . . . . . 163
G.3 Royal Roads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
G.4 Phenotypical Building Blocks . . . . . . . . . . . . . . . . . . . . 172
G.5 A GP Royal Road Function . . . . . . . . . . . . . . . . . . . . . 174
G.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

xi



LIST OF TABLES

2.1 Fitness as β is varied . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Naive attempt at typing for clique detection . . . . . . . . . . . . 20
2.3 Successful attempt at typing for clique detection . . . . . . . . . . 21

5.1 Ave. appearance of optimal solution for different search strategies 57
5.2 Expected versus possible candidate cliques of size 8 . . . . . . . . 70

6.1 Hardness factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Base Heuristics for FC . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 Duplication of coding segments for FC . . . . . . . . . . . . . . . 100
6.4 Repair rate vs GA for FC . . . . . . . . . . . . . . . . . . . . . . 102
6.5 Collective Adaptation and duplication of coding segments for FC 105
6.6 Collective Adaptation and GA for FC . . . . . . . . . . . . . . . . 109
6.7 Variants of GP for FC . . . . . . . . . . . . . . . . . . . . . . . . 114

A.1 Average maximal Generational Max Clique of Generation . . . . . 133
A.2 Average maximal Max Clique Cover of Generation . . . . . . . . . 134
A.3 Sum of Time Differences per Generation . . . . . . . . . . . . . . 135

B.1 Average maximal Generational Max Clique of Generation . . . . . 136
B.2 Average maximal Max Clique Cover of Generation . . . . . . . . . 137
B.3 Sum of Time Differences per Generation . . . . . . . . . . . . . . 139

C.1 Average maximal Generational Max Clique of Generation . . . . . 141
C.2 Average maximal Max Clique Cover of Generation . . . . . . . . . 142
C.3 Sum of Time Differences per Generation . . . . . . . . . . . . . . 143

D.1 Average maximal Generational Max Clique of Generation . . . . . 146
D.2 Average maximal Max Clique Cover of Generation . . . . . . . . . 147
D.3 Average maximal Collective Memory Max Clique of Generation . 148
D.4 Average maximal Collective Memory Clique Cover of Generation . 149
D.5 Sum of Time Differences per Generation . . . . . . . . . . . . . . 150

E.1 Average maximal Generational Max Clique of Generation . . . . . 151
E.2 Average maximal Max Clique Cover of Generation . . . . . . . . . 152
E.3 Average maximal Collective Memory Max Clique of Generation . 153
E.4 Average maximal Collective Memory Clique Cover of Generation . 154
E.5 Sum of Time Differences per Generation . . . . . . . . . . . . . . 155

F.1 Average maximal Generational Max Clique of Generation . . . . . 157
F.2 Average maximal Max Clique Cover of Generation . . . . . . . . . 158
F.3 Average maximal Collective Memory Max Clique of Generation . 159
F.4 Average maximal Collective Memory Clique Cover of Generation . 160

xii



F.5 Sum of Time Differences per Generation . . . . . . . . . . . . . . 161

xiii



LIST OF FIGURES

0.1 A fitness landscape . . . . . . . . . . . . . . . . . . . . . . . . . . xviii
0.2 GA crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
0.3 GP crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

1.1 An example STGP type hierarchy . . . . . . . . . . . . . . . . . . 7
1.2 Example of a simple class/type hierarchy . . . . . . . . . . . . . . 8
1.3 Addition of two Fords . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Instantiation of IFTE . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Non–branching type hierarchy for the clique detector . . . . . . . 12
1.6 Example branching type hierarchy . . . . . . . . . . . . . . . . . . 13

2.1 Example four node graph . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Fitness for four node graph . . . . . . . . . . . . . . . . . . . . . 17
2.3 Example S–expression for the clique detection . . . . . . . . . . . 19
2.4 Bad S–expression corresponding to the first attempt at a type system 20
2.5 Non–branching type hierarchy for the clique detector . . . . . . . 21
2.6 2 fully connected cliques of cardinality 4 . . . . . . . . . . . . . . 23

3.1 Non–coding segments prevent destructive crossover . . . . . . . . 27
3.2 Example 10 node graph . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 S–expression for 10 node graph . . . . . . . . . . . . . . . . . . . 32
3.4 Repaired S–expression for 10 node graph . . . . . . . . . . . . . . 32
3.5 Best fitness for base case and various repair rates . . . . . . . . . 33
3.6 Best S–expression for generation 0 . . . . . . . . . . . . . . . . . . 34
3.7 Generation 0’s best S–expression doubled . . . . . . . . . . . . . . 34
3.8 Best for repair rate 0f 0.5% and varying duplicates . . . . . . . . 36
3.9 Best for repair rate 0f 10% and varying duplicates . . . . . . . . . 37
3.10 IFTE promotes duplication . . . . . . . . . . . . . . . . . . . . . 38

4.1 Computational agent society . . . . . . . . . . . . . . . . . . . . . 41

5.1 Passive–Active and the 10–node example graph . . . . . . . . . . 57
5.2 Utility of repair in Passive–Active . . . . . . . . . . . . . . . . . . 58
5.3 Passive–Active and the hamming6–4 graph . . . . . . . . . . . . . 60
5.4 Passive–Active and activity of process agent . . . . . . . . . . . . 63
5.5 Passive–Active and multiple process agents . . . . . . . . . . . . . 66
5.6 Random search as a subsystem . . . . . . . . . . . . . . . . . . . 68
5.7 Performance of underlying search engines . . . . . . . . . . . . . . 69
5.8 Log plot of Table 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.9 Fitness for the Fully Connect 16 graph . . . . . . . . . . . . . . . 74
5.10 Underlying performance of search subsystems (Fully Connect 16

graph) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xiv



5.11 Active–Active versus Passive–Active . . . . . . . . . . . . . . . . 79
5.12 Active–Active with transfer back into GP chromosomes . . . . . . 80
5.13 Comparison of fitness/generation for the five major search systems. 82

6.1 Greedy algorithm for partition into cliques . . . . . . . . . . . . . 87
6.2 2 fully connected cliques of cardinality 4 . . . . . . . . . . . . . . 89

8.1 Greedy algorithm for max clique . . . . . . . . . . . . . . . . . . . 123

C.1 Best Fitness for the fc4–8.clq graph . . . . . . . . . . . . . . . . . 144
C.2 Generational Clique Cover for the fc4–8.clq graph . . . . . . . . . 144
C.3 Generational Max Clique for the fc4–8.clq graph . . . . . . . . . . 145

G.1 The GP-schema H = {((+ 5 6), 2)} . . . . . . . . . . . . . . . . . 167
G.2 Schemata describing an instance of R1 . . . . . . . . . . . . . . . 170
G.3 Royal Road function R2 . . . . . . . . . . . . . . . . . . . . . . . 171
G.4 Example graph, 2 fully connected cliques of cardinality 4 . . . . . 177
G.5 3 fully connected cliques of cardinalities 4, 4, and 8 . . . . . . . . 177

xv



NOTATIONAL CONVENTIONS

Several notational conventions are used throughout this dissertation to assist the

reader. These conventions follow standard ones used in compiler construction.

A guide to the different notational conventions:

1. Functions are in boldface, addition.

2. Terminals are in italics, 19.27.

3. Types are in the typewriter family, Reals.

xvi



INTRODUCTION

A genetic algorithm (GA) employs weak search to find near optimal solutions

to problems in a given domain. A weak search heuristic utilizes minimal domain

knowledge during the search process. In contrast, a strong search heuristic de-

pends heavily on domain dependent knowledge to find a solution. While strong

search methods can speed up the search process, the drawback of such an ap-

proach is a loss of portability across problem domains. Weak search methods, on

the other-hand, can be readily extended from one domain to another.

When using GAs we represent a candidate solution to a problem in a structure

called a chromosome. Each allele, or position, in a chromosome, contains symbols

from a domain dependent language. The chromosome is evaluated by a domain

dependent function to determine its fitness, which is a measure of the “goodness”

of the solution represented in that chromosome. For example, consider a binary

encoding of length 5 and an objective function, f(c) = c2. Given c = 01101, we

have f(c) = 169. We can perturb this chromosome to get a new chromosome. We

could change the first bit in c to get c+a = 11101 and f(c+a ) = 841. If we assume

that we are trying to maximize f(c), then clearly c+a is more preferable than c.

However, since we know nothing about the domain, it should be just as likely

that we changed the second and not the first bit in c, yielding c+b = 00101 and

f(c+b ) = 25. Clearly, c is more preferred to c+b .

A fitness landscape is a plot of the fitnesses of all possible chromosomes. One

xvii



possible landscape is shown in Figure 0.1. The goal of search in a fitness landscape

is to find the global optimum, which could be either a minima or maxima. Based

on our knowledge of the fitness of selected structures, we can employ several

heuristics to guide the search through the fitness landscape.

-10 -5 0 5 10
-10

-5
0

5
10

-0.5

-0.25

0

0.25

0.5

0.75

1

x

y

f(x,y)

Figure 0.1: A fitness landscape.

With exhaustive search, we simply examine each possible structure and this

process is guaranteed to find the global optimum. However, with large alphabets

and chromosome lengths, such a search becomes unwieldy. In random search ini-

tial solutions are randomly generated and search moves randomly between struc-

tures in this space of solutions. Such a scheme jumps across the fitness landscape

with the hope that with enough samples the global optimum will be reached.

With infinite sampling, the global optimum will be found, but with finite sam-

pling, there is no such guarantee.

Without a loss of generality, we can assume that we are trying to maximize

fitness. We can then define a local optima to be a local maxima, which is a point

in the fitness landscape such that its neighbors have the property that their fitness

xviii



is either less than or equal to its fitness. A global maxima is a point in the fitness

landscape such that all other points have the property that their fitness is either

less than or equal to its fitness. If we examine the fitness landscape in Figure 0.1,

we see that it is “hilly”; i.e., there is an increasing gradient from less fit encodings

to several local maxima.

The hill climbing heuristic takes advantage of this property by always following

an increasing gradient. If f(c+) > f(c), then c+ is selected as the current solution,

else c is retained as the current solution. While it is not shown in the fitness

landscape of Figure 0.1, sometimes it is advantageous to take a “side–step” if

there is no increase in gradient, but several neighboring points have a fitness

equal to the current point. We modify the algorithm such that if f(c+) >= f(c),

then c+ is selected as the current solution. A problem with hill climbing is that

based on the initial randomly generated solution, the search might get stuck at

a local optima. For example, in the fitness landscape of Figure 0.1, if the initial

solution is in any of the four corners, the hill climbing algorithm quickly gets stuck

at a local maxima. Indeed, unless the initial solution is already on the large hill

at the center, the basic hill climbing algorithm can not find the global optimum

for this problem.

Simulated annealing algorithms use a heuristic which allows for exploration

away from local optimum. Like hill climbing, if f(c+) >= f(c), then c+ is selected

as the current solution. Otherwise, we accept the other solution as the current

xix



solution with some probability,

p = e
−|f(c+)−f(c)|

T ,

the worse solution. T is a parameter that models a decreasing temperature; as it

decreases, the probability of accepting a worse solution also decreases.

The GA approach maintains a population of chromosomes. After each chro-

mosome has been evaluated, reproduction, a domain independent process, drives

the creation of new chromosomes for the next population of solutions. A cycle

of evaluation and reproduction is called a generation. Chromosomes are selected

to contribute to the new population based on their relative fitness; chromosomes

which have higher fitness in a given generation are more likely to be selected.

Reproduction by itself introduces no new solutions to the population of solutions.

The basic GA algorithm employs two other operators, crossover and mutation, to

change the solutions which have been selected via reproduction [Goldberg, 1989].

Instead of directly creating a population of k chromosomes, selection first chooses

a pool of k parents with replacement from the current population. Two parents

are then selected, without replacement, from this pool to exchange genetic ma-

terial to form two children, which are formed via crossover, see Figure 0.2. An

allele a1 is selected in parent 1 and an allele a2 is selected from parent 2. One

child contains the material to the right of and up to a1 from parent 1 and the

material from the left of a2 from parent 2. The other child contains the material

to the right of and up to a2 from parent 2 and the material from the left of the

xx



a1 from parent 1. After the new population has been formed from these children,

the mutation operator can be applied; one or more symbols in the chromosome

are randomly changed into new symbols from the language. The average fitness

of the chromosomes per generation is likely to increase and over time the system

converges to a “good”, i.e., close to optimal, solution. The repetitive application

of evaluation and selection has been shown to efficiently solve a variety of prob-

lems in many different domains [Davis, 1991; Goldberg, 1989; Goldberg, 1994;

Koza, 1992].

0 1 0 1 0 0 1 0 1 0
1 1 1 1 0 1 1 1 1 0

(b)

0 1 0 1 0 1 1 1 1 0
1 1 1 1 0 0 1 0 1 0

(a)
Figure 0.2: Single point crossover between two chromosomes.

The canonical GA chromosome, or string representation, utilizes a binary al-

phabet: {0, 1}. A schema (plural schemata) is a template describing subsets of

strings within the string. If a don’t care symbol, i.e., a symbol matching either

0 or 1, is utilized, we have the schemata alphabet {0, 1, ∗}. For example, the

schema s = **0**1** describes all strings that have a 0 in the third position and

a 1 in the sixth. The order of a schema is the number of 0’s and 1’s present in the

template (o(s) = 2). The defining length of a schema is the distance between the

outermost non–don’t care positions in the schema (δ(s) = 3). Building blocks

have a small defining length and are highly fit. By having a small defining length,

building blocks are not as susceptible to destructive crossover, i.e., crossover which

xxi



disrupts the schema, as are schemata with larger defining lengths1. Being highly

fit, once instantiated in the population, they are more than likely to increase their

number of appearances in the population. The Schema Theorem relates how

building blocks are combined to form better solutions over time [Holland, 1975;

Goldberg, 1989].

Genetic programming (GP) is an off–shoot of GA research and the initial “ba-

sic theory” describing the operation of GP was borrowed from the GA Schema

Theorem [Koza, 1992]. While GP utilizes the basic GA algorithm and also has

the concepts of crossover and mutation, the canonical GP chromosome repre-

sentation is a parse tree (S–expression) and the alphabet is n-ary. As seen in

Figure 0.3, when two parents are selected for crossover, two nodes are randomly

selected in each tree and these nodes form the roots of two subtrees which are

exchanged between the parents. From Figure 0.3, we see that GP chromosomes

do not have a fixed length like the GA chromosomes and that the same subtree

structure may appear twice in the same tree (Subtrees labeled B and C in Child2

of Figure 0.3(b).).

If we examine the definition of a building block, we see that it is a highly

fit schema which has a short defining length. For the parent chromosomes of

Figure 0.3, a schema with short defining length is

H1 = {(IFTE ∗ ∗ (+ 6 9))}2,

1Section 3.3 provides an overview of this process.
2Notice the difference between the schemata for the GA and the GP: in the GA schemata,

we must denote all of the fixed positions, e.g., s = **0**1**, whereas in GP schemata, we do

xxii



IFTE

3

<

X1

0 +

6 9

IFTE

+

6 9

IFTE

+

6 9

IFTE

3

FALSE +

6 9

*

17-

X1 X2

*FALSE

17-

X1 X2

<

X1

0

(a)

(b)

swap point 1 swap point 2

Child 2

Parent 2

Child 1

B CA

Parent 1

Figure 0.3: Subtree swap crossover between two chromosomes.

i.e., the function IFTE3 which has three arguments with the third being instan-

tiated as the subtree (+ 6 9). Is this schema highly fit? I claim it is highly

fit; it appears in both chromosomes and it accounts for all the fitness awarded to

Parent 2. However, the building block does not appear in Child 1 and appears

once in Child 2. The schema

H2 = {(+ 6 9)}

not denote all possible combinations, i.e., each schema represents a rooted subtree which may
appear anywhere in the chromosome.

3If the first subtree evaluates to TRUE, then return the evaluation of the second subtree,
else return the evaluation of the third subtree.

xxiii



is also a building block; it appears once in both parents, once in Child 1 and twice

in Child 2. The Schema Theorem handles the first case but not the second case:

during GA crossover, a schema can be disrupted in one or both children, but it

will not appear twice in either child.

Also, if we examine Child 2, we see that the subtree labeled B will not be

evaluated: the first argument to IFTE is FALSE and thus the subtree at C

is evaluated. The subtree at B is defined to be a non–coding segment because

its evaluation does not contribute either positively or negatively to the fitness

evaluation of the current chromosome. The subtree at A is defined to be a coding

segment because its evaluation can contribute either positively or negatively to

the fitness evaluation of the current chromosome. The evaluation of a subtree is

highly contextual.

Is the schema

H3 = {(IFTE ∗ (+ 6 9) ∗)}

highly fit? In keeping with the earlier decision, it must be. For Child 2, we could

change the value of node A from FALSE to TRUE and it would not change the

fitness evaluation of the chromosome. But how will the GA Schema Theorem

account for the multiple appearances of building blocks such as the schema H2

in Child 2? Even though the first appearance does not contribute to the fitness

of the current chromosome, it could be expressed in a descendant which did not

xxiv



already have it. Also, are the following schemata equivalent:

{(+ 9 6)} ≡ {(+ 6 9)}?

The inability of the Schema Theorem to account for the multiple appearance

of subtrees, i.e., building blocks, and their hierarchical recombination has led re-

searchers to believe that the Schema Theorem does not hold for GP [O’Reilly,

1995; O’Reilly and Oppacher, 1995b]. Altenberg believes the Schema Theorem

can not account for the proliferation of copies of subtrees and he applies Price’s

Theorem and introduces a “constructional fitness” to account for such prolifera-

tion [Altenberg, 1994]. The key to understanding constructional fitness is in his

redefinition of a building block; a building block is not necessarily highly fit, in-

stead it is a block which has a higher probability of increasing fitness in a child

chromosome. Thus a block is not a building block because of its contribution

to the current chromosome, but rather because of its potential contribution to

descendants of the chromosome. The distinction is subtle, but critical for under-

standing the characteristics of building blocks in GP chromosomes.

GP building blocks are difficult to represent, are difficult to incorporate into

the Schema Theorem, and are difficult to define. The common definition is based

on the empirical observation of multiple copies of subtrees in the chromosome.

I utilize a more concise definition of GP building blocks: they are those coding

segments which contribute positively to the fitness of the chromosome. A building

block can only be detected if and only if its fitness can be determined apart from

xxv



that of the chromosome. This definition removes the contextual requirements for

determining if a given subtree is a building block. Indeed, a building block can

be extracted from the chromosome such that it stands on its own and potentially

it could be inserted into another chromosome.

I apply my definition of a building block to the detection of cliques in a graph.

In the clique domain, the problem is given a graph G, to determine either the

maximal complete subgraph of G with the highest cardinality, max clique (MC),

or all maximal complete subgraphs of G, clique cover (CC) (Both problems are

NP-complete.). A property of finding a maximal clique is that it is comprised of

complete subgraphs. Furthermore, if we define a candidate clique as a complete

subgraph, which may or may not be maximal, then for a clique of cardinality n,

there are Cn
k candidate cliques of cardinality k. I expect to detect building blocks

in the clique domain because it is an example of a domain for which there is

data decomposition; the solution may be broken into sub–solutions. The unique

candidate cliques in the chromosome form sub–solutions for cliques and as such

they may be integrated to form the clique cover for a given graph.

The contributions of this dissertation are the sharing of building blocks both

inside and outside of chromosomes. I find that by isolating coding segments,

by increasing the probability they will combine to form larger segments, and by

additionally allowing them to be combined outside of the chromosomes, I can

complement the weak search heuristics such that better partial solutions can be

found.

xxvi



I validate my contributions by systematically investigating new techniques for

the sharing of building blocks. My approach is geared in two phases: first I show

the applicability of each technique against a single graph and then I analyze the

results from testing the technique against the FC family of graphs. The graphs

I utilize for testing the applicability of the techniques are either a hand–crafted

graph of slight complexity or a graph with more complexity from a testbed [John-

son and Trick, 1996]. Each algorithm is systematically validated against the FC

family of graphs, which have the properties that the set of partial solutions is

known, the set of partial solutions is larger than viable chromosome lengths, and

pruning algorithms are not effective.

I explore the sharing of building blocks inside the chromosome via the duplica-

tion of coding segments and outside of the chromosome via collective adaptation:

Duplication of coding segments: By determining all of the building blocks

inside a chromosome, I also determine all of the non–coding segments inside

that chromosome. From the previous example, we know that a non–coding

segment might be a building block, e.g., if the subtree at B were evaluated,

then it would contribute fitness to the evaluation of the chromosome. How-

ever, with the definition of a building block that I have adopted, I necessarily

know that non–coding segments are not building blocks.

I can then replace, or repair, the non–coding segments with copies of the

coding segments. (This process entails a mapping back from the phenotype

to the genotype, which may not be an easy process as many genotypes may

xxvii



evaluate to the same phenotype.) In the first part of this dissertation, I

empirically demonstrate the effectiveness of varying both the rate of repair

of the chromosome and the number of duplicates that are inserted into

the chromosome. The weak search heuristics are able to find either the

solution or better partial solution than can be found without the duplication

of coding segments.

A previous conjecture in the literature was that non–coding segments only

provided protection against destructive crossover. I show that the non–

coding segments also provide a natural back–up mechanism of the material

in the coding segments. The chromosome can explore, via crossover or

mutation, with the original copy of the coding segments and keep a backup

version for backtracking.

Collective adaptation: As I can detect and extract building blocks from one

chromosome and the evaluation of a building block is independent of the

chromosome, I can utilize the building blocks from any chromosome to re-

place non–coding segments in any other one. Furthermore, I need not re-

strict that only chromosomes in a given generation may contribute building

blocks for that generation. In the second part of this dissertation, I system-

atically examine collective adaptation, which is the integration of building

blocks via collective memory.

The collating of partial solutions is significant in piecing together the so-

lution. Furthermore, I can extend the effect of collective adaptation by

xxviii



allowing strong search heuristics to engage in local search within the col-

lective memory. While this search heuristics prove to be intractable in the

original search space, they are effective in the search space of partial solu-

tions contained within the collective memory. I can also extend the search

capability by transferring partial solutions back from the collective mem-

ory into the chromosomes. Such a transfer can refocus the neighborhood of

search being examined by the weak search heuristics.

By sharing building blocks both inside and outside of the chromosome, I extend

the processing power of both GP and GA. I also show that both techniques can be

successfully applied to other weak search heuristics: random search, hill climbing,

and simulated annealing. While the results I present are specific to the clique

domain, my results hold in general; the theory of NP–completeness states there

exists a polynomial time mapping from one NP–complete problem to any other.

There are three basic NP-complete problems one can consider while detecting

cliques in a graph [Garey and Johnson, 1979] (pages 193–194):

Partition into cliques: Given that G = (V,E) and a positive integer K ≤ V ,

can the vertices ofG can be partitioned into k ≤ K disjoint sets V1, V2, . . . , Vk

such that, for 1 ≤ i ≤ k, the subgraph induced by Vi is a complete subgraph?

Or, can we partition the clique cover of G such that each clique does not share

an edge with any other clique?

Covering by cliques: Given that G = (V,E) and a positive integer K ≤ E,

are there are k ≤ K subsets V1, V2, . . . , Vk of V such that each Vi induces

xxix



a complete subgraph of G and such that for each edge {u, v} ∈ E there is

some Vi that contains both u and v? Or, can we determine all cliques of G?

Clique: Given that G = (V,E) and a positive integer K ≤ V , does G contains

a clique of size K or more, i.e., a subset V ′ ⊆ V with |V ′| ≥ K such that

every two vertices in V ′ are joined by an edge in E? Or, can we find the

maximal cardinality clique of G?

I can map any NP–complete problem into one of these three problems from the

clique domain and then utilize duplication of coding segments (internal sharing

of building blocks) and collective adaptation (external sharing of building blocks)

to enhance the search for a solution.

The rest of this dissertation is laid out as follows: Chapter 1 is an overview of

genetic programming, strongly typed genetic programming, and type inheritance.

Chapter 2 introduces the clique detection problem and details how type inheri-

tance is utilized to both allow collections of partial solutions for clique detection in

a graph and to reduce the search space of possible encodings of partial solutions.

Chapter 3 presents experimentation into the duplication of coding segments in a

GP chromosome. Chapter 4 defines collective adaptation for a society of compu-

tational search agents. Chapter 5 presents experimentation into collective adap-

tation with a GP search heuristic. Chapter 6 validates the GP experiments with

a family of graphs and also examines various other search heuristics as engines for

collective adaptation.

xxx



CHAPTER I

Genetic Programming

1.1 Introduction

Holland’s work on adaptive systems produced a class of biologically inspired al-

gorithms known as genetic algorithms (GAs) that can manipulate and develop

solutions to optimization, learning, and other types of problems [Holland, 1975].

In order for GAs to be effective, the candidate solutions should be represented as

n–ary strings. Though GAs are not guaranteed to find optimal solutions, they

still possess some nice provable properties (optimal allocation of trials to sub-

strings, evaluating exponential number of schemas with linear number of string

evaluations, etc.), and have been found to be useful in a number of practical

applications [Davis, 1991].

Koza’s work on genetic programming (GP) was motivated by the represen-

tational constraint, i.e., fixed length encodings, in traditional GAs [Koza, 1992].

His claim is that a large number of apparently dissimilar problems in artificial

intelligence, symbolic processing, optimal control, automatic programming, em-

pirical discovery, machine learning, etc., can be reformulated as the search for

a computer program that produces the correct input–output mapping in any of

these domains. To facilitate this search, he uses the traditional GA operators for

selection and recombination of individuals from a population of structures, and

1



2

applies the operators on structures represented in a more expressive language than

used in traditional GAs. The representation languages used in GPs are computer

programs represented as Lisp S–expressions. GPs have attracted a large number

of researchers because of the wide range of applicability of this paradigm, and

the easily interpretable form of the solutions that are produced by these algo-

rithms [Kinnear, Jr., 1994a; Koza, 1994; Angeline and Kinnear, Jr., 1996]. We

assume the reader is familiar with the fundamentals of GAs and GPs.

A GP system is primarily comprised of three main parts:

• A population of chromosomes.

• A chromosome evaluator.

• A selection and recombination mechanism.

In implementing the system for a new problem domain, the designer must encode

function and terminal sets, which will comprise the elements or genes of the chro-

mosome, and implement a function which can evaluate the fitness, or applicability,

of a chromosome in the domain.

Chromosomes are typically represented as parse trees. The interior nodes are

functions and the leaf nodes are terminals. The first population of chromosomes

is randomly generated. Each chromosome is then evaluated against a domain

specific fitness function. The next generation is comprised of the off-spring of the

current generation: parents are randomly selected in proportion to their fitness

evaluation and create the children by exchanging subtrees during the crossover



3

process. Thus, more fit chromosomes are likely to contribute genetic material to

successive generations. This generational process is then repeated until either a

preset number of generations has passed or the population converges.

Two considerations for designing the function and terminal sets are closure and

sufficiency. Closure requires all of the functions to accept arguments of a single

data type (i.e., a float) and return values of that same data type. A consequence is

that all functions must return values that can be used as arguments for any other

function. Hence, closure entails any element can be a child node in a parse tree for

any other element without having conflicting data types. An example of closure

is given in the prefix expression div Ralph 0. Not only must the division operator

handle division by 0, it must also convert Ralph into a numeric value. Sufficiency

requires that the domain be solvable with the given function and terminal sets.

A problem with using GP to solve large and complex problems is the con-

siderable size of the state–space to be searched for generating good solutions.

Even for small terminal and function sets and tree depths, search spaces of the

order of 1030 − 1040 are not uncommon [Montana, 1995]. To address this press-

ing problem, researchers have been investigating various means to reduce the GP

state–space size for complex problems. Notable work in this area include Au-

tomatically Defined Functions (ADF) [Kinnear, Jr., 1994b; Koza, 1994], module

acquisition (MA) [Angeline, 1994; Kinnear, Jr., 1994b], and strongly typed genetic

programming (STGP) [Montana, 1995]. The first two methods utilize function de-

composition to reduce the state–space. The STGP method utilizes structuring of



4

the GP S-expression to reduce the state–space. We strongly agree with Montana’s

claim of the relative advantage of STGP over GP for complex problems [Montana,

1995].

1.2 Strongly Typed Genetic Programming

Montana claims that closure is a serious limitation to genetic programming [Mon-

tana, 1995]. Koza describes a way to relax the closure constraint using the concept

of constrained syntax structures [Koza, 1992]. Koza used tree generation routines

which only generated legal trees. He also only used operations on the parse trees

which maintained legal syntactic structures.

Maintaining legal syntactic structures is at the heart of STGP. In STGP, vari-

ables, constants, arguments, and returned values can be of any type. The only

restriction is that the data type for each element be specified beforehand. This

causes the initialization process and the various genetic operations to only con-

struct syntactically correct trees. A benefit of syntactically correct trees is that the

search space is reduced. This has been shown to decrease the search time [Mon-

tana, 1995; Haynes et al., 1995b].

One of the key concepts for STGP is the generic function, which is a mechanism

for defining a class of functions, and defining generic data types for these func-

tions. Generic functions eliminate the need to specify multiple functions which

perform the same operation on different types. For example, one can specify a

single generic function, VECTOR–ADD, that can handle vectors of different



5

dimensions, instead of multiple functions to accommodate vectors for each di-

mension. Specifying a set of argument types, and the resulting return type, for a

generic function is called instantiating the generic function.

The STGP search space is the set of all legal parse trees. That is, all of the

functions have the correct number of parameters of the correct type. Generally

the parse tree is limited to some maximum depth. The maximum depth limit on

a parse tree is one of the GP parameters. This keeps the search space finite and

manageable. It also prevents trees from growing to an extremely large size.

Montana presented several different examples illustrating these concepts. STGP

was used to solve a wide variety of moderately complex problems involving multi-

ple data types. The examples showed that STGP was very effective in obtaining

solutions to the problems compared to GP. Montana lists three advantages of

STGP and generic functions:

1. Generic data types eliminate operations which are legal for some sets of data

used to evaluate performance, but which are illegal for other possible sets of

data.

2. When generic data types are used, the functions that are learned during the

genetic programming process are generic functions.

3. STGP eliminates certain combinations of operations. Hence it necessar-

ily reduces the size of the search space. In many cases the reduction is a

significant factor.

One of Montana’s examples presents a problem with a terminal set of size two,



6

and a function set of size 10. When the maximum tree depth was restricted to five,

the size of the search space for the STGP implementation was 105, while the size of

the GP search space was 1019. In the same example when the maximum tree depth

was increased to six, the size of the search space for the STGP implementation

was 1011, while the size of the GP search space was 1038 [Montana, 1995].

It has been shown that STGP can significantly reduce the search space. The

STGP variant mainly restricts the construction and reproduction of chromosomes;

the basic algorithm is GP. Thus, unless we are explicitly dealing with strong

typing, we will utilize the term GP to refer to both untyped GP and STGP.

1.3 Type Inheritance

Strong typing is used to restrict the search space considered in the genetic pro-

gramming paradigm. This is shown in both the paper in which Montana in-

troduced STGP [Montana, 1995] and in our research into multiagent behavioral

strategies [Haynes et al., 1995b]. STGP is able to reduce the search space by

only allowing syntactically correct programs to be generated and produced by the

crossover and mutation operators. Montana types both the function return value

and the arguments, and requires that the typing restrictions be honored by all

operations on the S–expressions. Due to closure, standard GP has a “flat” type

space of only one level, but generic functions allow STGP to have two levels of

typing. We extend STGP by allowing a type hierarchy, which allows more than

two levels of typing. In order to allow for a minimal function set, generic types



7

HondasReals Fords Integers

Generic

Figure 1.1: An example STGP type hierarchy.

are introduced. Generic types must be instantiated during node construction.

In effect, generic types allow for a two level type hierarchy, as shown in Fig-

ure 1.1. From object oriented programming, we know that it can be desirable to

have more than two levels in a hierarchy. A simple example involving cars and

numbers illustrates this desire. If we consider the class hierarchy shown in Fig-

ure 1.2, and assume the standard arithmetic operators of addition, subtraction,

division, and multiplication, then we do not want to have specialized versions

of these operators for Reals and Integers. The standard typing solution is to

have a generic function for each of the operators, which can handle any type.

However, to type addition as Generic, we would have to ensure that addition

is overloaded such that it makes sense in all contexts which can be instantiated

from Generic. Failure to do so leads to the undesirable result that the program

in Figure 1.3 is valid. What does it mean to add two Fords? Are we simply

counting the cars, by type, that pass us on the highway? Or are we trying to add

the qualities of one car to another to get a hybrid?

We would like to define the operator addition to be only valid in the class

Numbers, appropriately overload it in class Reals and class Integers, and force

the program in Figure 1.3 to be invalid. This redefinition further restricts the



8

Reals

Numbers

Generic

Integers Fords

Cars

Hondas

Figure 1.2: Example of a simple class/type hierarchy.

Mustang

Addition

Tempo

Figure 1.3: Addition of two Fords, which is not allowed.

allowed inputs while still reducing the total number of functions. We are extending

the concept of a generic type for the tree to generic types for subtrees.

A generic type can be thought as a variable for types and can be instantiated

with any of the other allowable types. This property requires that the Generic

type be the root node of the type tree, as is shown in both Figure 1.1 and Fig-

ure 1.2. The extension we present in this chapter is to allow multiple levels of

generic types, i.e., the Numbers and Cars nodes in Figure 1.2. We derived the term

type hierarchy from the fact that in the tree form of the class hierarchy, as shown

in Figure 1.2, the generic types are inherited just like the other class properties.

Thus class hierarchies illustrate the inheritance of type.



9

TRUE FALSE

IFTE

IFTE

TRUE

Mustang Maverick

Figure 1.4: Instantiation of IFTE.

1.3.1 Generic Functionality

A classical example of a generic function is the IFTE function, which evaluates

and returns its second argument if the first argument evaluates to true, otherwise

it evaluates and returns the third argument. It can be typed as

Generic IFTE(Boolean A, Generic B , Generic C ),

which allows IFTE to be reused by any type. Note that once B is instantiated,

then both C and the return of IFTE must be instantiated to the same type.

Figure 1.4 illustrates the instantiation of the IFTE operator. The IFTE at

the root of the tree has a return type of Ford, and the second IFTE has a return

type of Boolean. Notice that each of the respective return types is typed the

same as the respective B and C arguments.

The STGP algorithm differs from GP in that typed–based restrictions must be

enforced at three points: initial tree generation, mutation, and crossover. As trees

are generated, only child nodes with a return type matching the argument type



10

of the parent node can be instantiated into the tree. Also, even if a child node

is type compatible with an argument, there has to be a check to make sure that

the subtree represented by the child node does not violate the maximum depth

restriction. A type table, showing valid types per depth level, is generated a priori

to provide quick lookup to determine if this restriction has been violated. The

expected type for the root node is an input parameter and domain dependent. It

is during tree generation that generic functions are instantiated. Note that the

standard mutation operator is a specialized case of tree generation.

During the crossover process, the return value type of the two subtrees selected

for exchange must be tested to see if they are of the same type and if the resulting

trees violate depth restrictions. If either check fails, then two new subtrees are

selected. If, after a finite number of selections, no valid crossover points are found,

then the two parent trees are copied into the pool for the next generation. At this

point there can not be any generic types in the S–expressions, as they must have

been instantiated.

1.3.2 Modifying STGP

Abstract classes do not contain any instantiated objects in the class. An example

of this is the Generic class of STGP. In STGP, only one abstract class is allowed.

We propose to allow multiple abstract classes. A concrete class is one in which

a class can have objects instantiated in the class. Note that all concrete classes

can be made abstract by simply adding another class under the concrete class,

and putting all objects that were originally in the concrete class into this new



11

subclass.

The distinction can be illustrated by considering the Cars type in Figure 1.2:

1. Do we allow an instantiation of Cars to be the set of all automobiles minus

the sets of Fords and Hondas?

2. Or is Cars the set of all automobiles including Fords and Hondas?

3. Or are there no other automobiles other than Fords and Hondas?

The last item reflects an abstract base class, and the first two are cases of concrete

base classes.

An STGP algorithm which is modified for type inheritance has to perform

additional checks during tree generation, crossover and mutation. During tree

generation, base classes (types), both abstract and concrete, will also have to be

instantiated. Abstract base classes do not have any objects that can be instanti-

ated themselves, instead they serve as place-holders for collections of objects.

We construct a type tree to facilitate this checking. An example type tree is

shown in Figure 1.2. Using the subtype principle, wherever a type may appear

a descendant of it in the type tree may also appear. Following the example of

generic functions, once an argument is instantiated to a specific type, then the

remaining arguments are also typed to that instantiation. Thus an additional

check must be performed to determine if a subtype is allowed.

Type trees may be considered by two cases: non–branching and branching. In

a non–branching type tree the tree has a branching factor of 1. This gives a linear



12

Node

IntNode

ExtNode

Figure 1.5: Non–branching type hierarchy for the clique detector, pre-
sented in Chapter 2.

type tree, as shown in Figure 1.5. A branching type tree has at least one node

with a branching factor ≥ 2.

A non–branching type tree, as in Figure 1.5, is relatively simple to implement.

Difficulties arise when we consider a branching type tree, as in Figure 1.2. In

particular, assume we have the type tree shown in Figure 1.6, with a root type

TP (Type Parent) which has left and right subtypes STLC (Sub–Type Left Child)

and STRC (Sub–Type Right Child) respectively. If we have a function

TP F (TP , TP),

and the first argument is typed as STLC, can the second be instantiated to type

STRC? Using the subtype principle, this is permissible. But it is possible that

STLC and STRC have some distinguishing characteristics that do not permit all

relationships between them to be expressed.



13

STLC STRC

TP

Figure 1.6: Example branching type hierarchy.

1.4 Conclusions

The generic functions of Montana’s STGP do not allow for type inheritance. I

have extended STGP to allow for type inheritance and in the next chapter I will

utilize type inheritance to encode candidate cliques in a GP chromosome.



CHAPTER II

Clique Detection

2.1 Introduction

A collection of cliques in a graph can be represented as a list of a list of vertices

which, in turn, can be represented by a tree structure. Given a graph G = (V,E)

a clique of G is a complete subgraph of G. We denote a clique by the set of vertices

in the complete subgraph. As the subgraph of G induced by any subset of the

vertices of a complete subgraph of G is also complete, it is sufficient to investigate

the maximal complete subgraphs of G, i.e., the maximal cliques. We consider two

NP–complete problems, finding either the maximum clique, max clique (MC), of

G or the set of all cliques, clique cover (CC), of G. Furthermore, we define a

candidate clique to be a complete subgraph which may or may not be maximal.

Each chromosome in the population represents a set of candidate maximal

cliques. The function and terminal sets are F = {ExtCon, IntCon} and T =

{1,. . . ,#vertices}. ExtCon “separates” two candidate maximal cliques, while

IntCon “joins” two candidate cliques to create a larger candidate. Strong typ-

ing [Montana, 1995] and type inheritance [Haynes et al., 1996b] are used to ensure

that the parent of an ExtCon node is either the root or another ExtCon node.

The fitness evaluation rewards for clique size and rewards for the number of

cliques in the tree. To gather the maximal complete subgraphs, the reward for

14



15

size is greater than that for numbers. The evaluation also does not reward for a

clique either being in the tree twice or being subsumed by another clique. The

first falsely inflates the fitness of the individual, while the second invalidates the

goals of the problem. The algorithm for the fitness evaluation is:

• Parse the chromosome into a sequence of candidate subgraphs, each repre-

sented by an ordered list of vertex labels.

• Throw away any candidate subgraphs which duplicate any of the vertex

labels.

• Throw away any candidate subgraphs that are not complete, which leaves

only candidate cliques.

• Throw away any duplicate candidate cliques and any candidate cliques that

are subsumed by other candidate cliques.

The fitness formula is

F = αc+

∑c
i=1 β

ni

βγ∗incmax
,

where c is the number of valid candidate maximal cliques, ni is the number of

vertices in cliquei, incmax is the maximum edges incident to any of the vertices,

and α, β, and γ are all user defined parameters. γ is a scaling factor to allow

fitness values to stay within the range of a C double.

β has to be large enough so that a large clique contributes more to the fitness of

one S–expression than a collection of proper sub-cliques contributes to the fitness



16

of a different S–expression. For example, consider the graph in Figure 2.1. It is

clear that there is only one maximal clique:

C4 = {1, 2, 3, 4}.

However, there are four sub-cliques of cardinality three:

C3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.

1 2

3 4

Figure 2.1: Example four node graph.

The various resultant fitnesses, as β is varied, γ = 0, and α is held constant, are

shown in Figure 2.2. It is not until β is larger than the cardinality of the maximum

clique that the desired result is found, see Table 2.1. Simply put, with the current

fitness function, β must be chosen to respect the cardinality of maximum cliques

in a graph. With other choices for α and β, our fitness function is more suited

to determining the largest maximal clique in a graph, rather than the set of all

maximal cliques.



17

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

F
itn

es
s

beta

Fc3
Fc4

Figure 2.2: Fitness for four node graph. Fc3 has β = 3 and Fc4 has
β = 4. The y-axis is logarithmic.

2.2 Prior Encodings

Various approaches have been taken within the GA community for clique detec-

tion [Bui and Eppley, 1995; Soule et al., 1996; Soule and Foster, 1997]. Bui and

Eppley used a binary encoding to solve for the max clique. Each position rep-

resented a vertex label from the graph and a ’1’ indicated that the vertex was

present in the max clique. Soule et al. point out that such an approach fails to

exploit building blocks. If two labels are connected, but not close together on

the chromosome, then the defining length will not be short, resulting in a greater

chance of disruption of the building block [Soule et al., 1996].

GP has also been used to find the max clique [Soule et al., 1996]. One function



18

α β FC4 FC3

1 1 2 5
1 2 17 36
1 3 81 112
1 4 257 260
1 5 626 504
1 6 1297 868
1 10 101001 4004

Table 2.1: Fitness for both the clique of cardinality four and four con-
nected sets of cardinality three, for different β.

is used, Union, and the terminal set is the set of vertex labels. Soule et al. point

out that the arguments provided by O’Reilly and Oppacher against a GP Schema

Theorem fail for this domain [O’Reilly and Oppacher, 1995b]: subtrees do not

interact adversely and subtrees represent hyperplanes of the fitness landscape.

Soule and Foster have used the max clique to investigate the relation between

graph characteristics and GA hardness [Soule and Foster, 1997], i.e., how hard

a particular problem is for a GA to solve. The GA encoding of Bui and Eppley

could not maintain several candidate cliques in a single chromosome. Soule and

Foster utilize a grouping GA [Falkenauer, 1995] to maintain multiple candidate

cliques in the chromosome. They fix the number of initial groups in a chromosome

to be initially 30 and slowly reduce it to 4. Since they are interested in max clique

and not clique cover, only the largest group contributes to the fitness of the

chromosome.



19

ExtCon

IntCon

ExtCon

IntCon

1 IntCon

IntCon

IntCon

1
1

12

3

2
2

C1 C2

C3

Figure 2.3: Example S–expression for the clique detection. Candidate
cliques are labeled C1, C2, and C3.

2.3 Implementing Type Inheritance

In order to implement the clique detector, we have to introduce the type inher-

itance discussed in Section 1.3. The chromosome is mapped into a list of list of

nodes. A chromosome is shown in S–expression form in Figure 2.3, and corre-

sponds to the set

C = {{1, 2}, {2, 1, 1}, {3, 1, 2}}.

Let Le be a list of candidate cliques, and Lc be a candidate clique, i.e. a list of

nodes. It is evident that each element of Le is an Lc. We want to ensure that the

members of Le and Lc are not Le; i.e., neither a list of candidate cliques nor a

candidate clique can have as a member a list of candidate cliques. This is shown

in Figure 2.4, where an ExtCon is a child node of an IntCon node.

If the typing is the same as in Table 2.2, then S–expressions of the form shown

in Figure 2.4 can be generated. These S–expressions correspond to incorrect



20

ExtCon

IntCon IntCon

12

IntCon 1
3 ExtCon

1

IntCon

2

IntCon

3 4

Figure 2.4: Bad S–expression corresponding to the first attempt at a
type system.

Function/Terminal Return Type Argument Structure

Nodes Node
ExtCon Node Node A, Node B
IntCon Node Node A, Node B

Table 2.2: Naive attempt at typing for clique detection.

representations of the solution space. We do not want lists of cliques in which

each clique can be a list of cliques.

From examining the desired form of the result, (see Figure 2.3) we derive the

type system shown in Table 2.3. This system can not be implemented in a stan-

dard STGP package. It is representative of the non–branching type inheritance

discussed in Section 1.3.2.

The two type levels represented in Table 2.3 are sufficient to solve the clique

problem. However the types can be confusing to someone trying to understand

the problem. Both IntCon and Nodes have a return type of Node. ExtCon is



21

Function/Terminal Return Type Argument Structure

Nodes Node
ExtCon ExtNode ExtNode A, ExtNode B
IntCon Node Node A, Node B

Table 2.3: Successful attempt at typing for clique detection.

Node

IntNode

ExtNode

Figure 2.5: Non–branching type hierarchy for the clique detector.

a list building operator, IntCon effectively performs a Union on its child nodes,

and Nodes returns a singleton set. Since IntCon is returning nodes, and Nodes is

returning a node, the type of Node suggests they are returning the same object.

Also, an ExtCon can have the terminal Nodes as a child node, with no intercon-

necting IntCon. This is the only way to specify a clique with only one member.

Thus, Node is overloaded. To be correct, we should extend the type hierarchy to

three levels, as shown in Figure 2.5.

2.3.1 Conclusion

The STGP as described by Montana [Montana, 1995] deals with genericity but

not with other aspects of object oriented methods. We extend STGP to deal

with type hierarchies, and in particular, with polymorphism and dynamic binding

aspects of the object oriented paradigm. Of the branching and non–branching



22

cases of the type hierarchy, we have successfully implemented the non–branching

case. In particular, we have shown how a non–branching type hierarchy can be

used in clique detection, and how the standard STGP does not work for clique

detection.

2.4 A GA Encoding

The GP encoding can be adapted to an encoding which can be used by RS, HC,

SA, and GA. I fix a maximum number of positions, have a vertex encoding, and

utilize a grouping GA to allow for a variable number of candidate cliques in a

chromosome. Unlike Soule and Foster, I do not fix the number of groups in the

chromosome. Instead I extend the alphabet and allow for a grouping marker, i.e.,

-1, which is never a valid vertex label, to indicate the ending of a group. I allow

a grouping marker to appear with some probability pm during both the initial

random generation of chromosomes and mutation. The number of groups needed

for a given graph is evolved along with the solution.

Figure 2.6 is an eight node graph which illustrates both max clique and clique

cover. There are exactly 2 cliques: C = {{0, 1, 2, 3}, {4, 5, 6, 7}}. An example

chromosome for the 8 node graph is

-1 3 3 -1 4 7 6 -1 0 1 2 5 6 -1 5 7 -1 -1 4 7 -1.

It has six candidate cliques, and the only cliques are #2 and #4:

C = {{4, 6, 7}, {5, 7}}.



23

The others are eliminated because they violate at least one of the rules: #1 con-

tains duplicate vertices, i.e., vertex 3 is repeated; #3 is not completely connected;

#5 contains no vertices; and, #6 is subsumed by #2.

2

0 1

3

4 5

76

Figure 2.6: Example graph, consisting of 2 fully connected cliques of
cardinality 4.

2.5 Conclusions

Encodings for detecting cliques in a graph for both a tree–based chromosome (to

be used for GP) and a n–ary string chromosome (to be used for GA, RS, HC, and

SA) were presented in this chapter. A common fitness evaluation can be applied

to both representations. Now that the search heuristics, encodings, and fitness

evaluation have been defined, we can start to investigate the sharing of building

blocks between chromosomes.



CHAPTER III

Duplication of Coding Segments

3.1 Introduction

Research into the utility of non–coding segments, or introns, in genetic–based en-

codings has shown that they expedite the evolution of solutions in domains by

protecting building blocks against destructive crossover [Levenick, 1991]. We con-

sider a genetic programming system where non–coding segments can be removed,

and the resultant chromosomes returned into the population. This parsimonious

repair leads to premature convergence, since as we remove the naturally occurring

non–coding segments, we strip away their protective backup feature. To avoid

this problem, we duplicate the coding segments in the repaired chromosomes and

place the modified chromosomes into the population. The duplication method

significantly improves the learning rate in the domain we have considered.

3.2 Non–coding Segments

Non–coding segments model the intragenic regions reported in the biological lit-

erature and are the intron segments seen in the genetic based encoding (GBE)

literature. They account for a large fraction of the DNA [Futuyma, 1986] and

are believed to be backup material for the coding segments. For example, the

frog Xenopus laevis has 450 copies of the gene codings for 18S and 28S rRNA

24



25

and 24,000 copies of the gene for 5S rRNA [Futuyma, 1986]. The non–coding

sequences might also act as a library for adaptation. During RNA splicing the

non–coding sequences are stripped, producing a smaller RNA molecule. As the

gene can be spliced in a variety of ways, the non–coding sequence for one mRNA

could be a coding sequence for another [Alberts et al., 1989]. As a protein evolves

to meet changes in the environment, it can also resort to the non–coding segments

instead of evolving entirely new genetic material.

3.3 Genetic Algorithms

In the GA literature, the emphasis on non–coding segments has focused on how

these extra bits provide a buffer against destructive crossover. The canonical GA

chromosome, or string, representation utilizes a binary alphabet. If a don’t care

symbol is utilized, we have the schemata alphabet {0, 1, ∗}. A schemata is a

template describing subsets of strings within the string. For example, the schema

s = *1**0*** describes all strings that have a 1 in the second position and a 0

in the fifth. The order of a schema is the number of 0s and 1s present in the

template. (In s, the order is 2.) The defining length of a schema is the distance

between the outermost bits defined on the binary alphabet. (In s, the defining

length is 3.) Building blocks have a small defining length and are highly fit. They

are integral to the schema theorem, which defines how the implicit parallel search

of a GA “builds” better solutions over time [Holland, 1975; Goldberg, 1989].

The addition of non–coding segments to chromosomes separates building blocks



26

and protects them from being sliced by crossover [Levenick, 1991]. GA chromo-

somes are typically of fixed length. With a string of length l, and a building block

of defining length δ, any crossover operation has a probability

Pl =
δ

l − 1

of destroying a building block [Goldberg, 1989]. If non–coding segments, of a total

length of i are added, then the probability of destructive crossover breaking up a

building block of defining length δ decreases to

Pl+i =
δ

l + i− 1
.

An example of non–coding segments is shown in Figure 3.1(a): there is a string of

length l = 15 and a building block, b1, of defining length δ = 6. The probability

of crossover destroying b1 is Pl = 0.43. In Figure 3.1(b) a non-coding segment

of length i = 5 is added and the probability of destructive crossover decreases to

Pl+i = 0.32. Adding the non–coding segment to the chromosome’s tail reduces

the probability of destructive crossover, but does not aid the recombination of

building blocks as much as placing the non–coding segments between the building

blocks [Wu and Lindsay, 1995].

The key to inserting non–coding segments into the GA chromosome is that

they reduce the chance of destructive crossover. An “artificial” constraint is that

only the coding segments are examined to determine the fitness of a chromosome.



27

* * * * * * * * ** 1 * 0 * * *

(b)
0 19

* 0

building
block b1 b2

1 1

segment
non-coding

* * *

(a)

* * * 1 * 0 * *
140

* 0

building
block b1 b2

1 1

Figure 3.1: Non–coding segments in GA chromosomes prevent destruc-
tive crossover. (a) Without the non–coding segment. (b) With the
non–coding segment.

Therefore material within a non–coding segment cannot be mixed with that within

the coding segment. Thus the non–coding segment material is meaningless, and

selection pressure does not drive it to be backup material.

Wu and Lindsay point out that there is a drawback to inserting non–coding

segments; they retard the growth of building blocks [Wu and Lindsay, 1995]. It

is hard for evolution to recombine the building blocks if non–coding segments are

there to prevent destructive crossover. However, once those building blocks are

formed, they are quite difficult to break up.

3.4 Genetic Programming

The “basic” theory of GP is borrowed from that of GA. Due to the difficulties in

detecting building blocks in GP chromosomes, research is ongoing into formally

connecting the theory as to why GP works with that of why GAs work [O’Reilly,

1995; Rosca and Ballard, 1996; Tackett, 1995]. The canonical GP chromosome

representation is a parse tree (S–expression). The difference between GA and GP



28

is more than the fixed versus variable genotype representation. In GA there is a

close relationship between the genotype and phenotype structure of a chromosome.

Thus the building blocks of GAs are usually represented at the genotype level,

and building blocks are relatively easy to detect. With the GP, building blocks

are at the phenotype or semantical level, and are difficult to represent, detect, and

capture. There can also be a duplication of building blocks in a GP chromosome,

whereas there may not be any such duplication in a GA chromosome.

Tackett compares the difficulty in researching building blocks between GP

and GA: different notations of schemata and a non–binary alphabet [Tackett,

1993]. He believes that small subtrees which appear frequently in S–expressions

are GP’s building blocks. These subtrees are prevalent due to their contribution

to the fitness of the chromosomes in which they appear.

Altenberg believes duplications appear inside GP chromosomes due to two

selection forces adding blocks of code to the population [Altenberg, 1994]. The

genetic operators spread a block to different chromosomes, and an emergent se-

lection pressure causes the formation of duplication within a chromosome. The

duplication is a result of the fitness of the block being replicated.

Angeline reports while there is redundancy in chromosomes, the benefit of

these semantically extraneous components is in the prevention of destructive

crossover [Angeline, 1994]. He highlights a difference between GAs and GPs with

regards to non–coding segments: in GAs they are added by design and in GPs

they evolve naturally.



29

Nordin investigates the dynamics of non–coding segments in GP evolution [Nordin,

1996]. His chromosomes are comprised of linear genomes which are 32 bit strings

and are binary code for a SUN–4 [Nordin, 1994]. Non–coding bits are defined to

be those that when replaced by a NOP instruction do not change the semantics

or phenotype of the chromosome. Using this capability, Nordin investigated the

effects of non–coding segments on destructive crossover. He reached the same con-

clusions regarding the utility of non–coding segments as did the GA researchers.

He reports promising preliminary results with the canonical representation.

3.5 Repair and Duplication

In my initial experiments in clique covering, I noticed that chromosomes had a high

signal–to–noise ratio; i.e., the non–coding segments were expressed significantly

more than the coding segments.

Under some chromosome encodings, certain genotypical combinations repre-

sent invalid states. For example, if we encode BCD numbers into binary, we need

four bits to represent each digit. The bit combinations in the range 0000 7→ 1001

are valid and the bit combinations in the range 1010 7→ 1111 are invalid. Either

crossover or mutation changes a valid combination into an invalid combination.

During the translation from genotype to phenotype, we can deterministically map

invalid combinations into valid combinations. With the BCD example, we could

use modulo arithmetic to force all combinations to be legal. If we then take

the phenotype and map it back into the genotype, we have repaired the chro-



30

mosome [Davis et al., 1993; Orvosh and Davis, 1993]. Furthermore, repair rate

denotes the percentage of repaired chromosomes that are returned into the popu-

lation, overwriting the original. Thus, if a GA chromosome has invalid bits, and

an algorithm can translate those bits into valid bits, then they can be repaired and

the resultant chromosome evaluated to determine the fitness of the original chro-

mosome. Repair is done at chromosome evaluation, not during the reproduction

stage; there is no assurance that the repaired chromosome will even be selected

for reproduction.

The translation from chromosome to a set of candidate cliques pares the chro-

mosome into the coding segment(s). All chromosomes undergo this process and

repair in this domain is the reverse process of translating the coding segment(s)

back into the chromosome. The list of candidate cliques for a given chromosome

succinctly encapsulates the content of that chromosome. Each candidate clique

is a building block from which “better” chromosomes can be constructed. This

paring down of the chromosome is similar to the RNA splicing in that non–coding

segments are stripped out of the RNA transcript from DNA [Alberts et al., 1989].

The evaluation function maps chromosomes from GP space to clique set space,

i.e., genotype to phenotype. Repair maps the phenotype back into a genotype.

Since the evaluation function removes nodes that do not contribute to the fitness,

the resultant chromosome is likely to be smaller than the original. As an example

consider the ten node graph, Figure 3.2, which I have used in my previous research



31

to test the clique covering system. There are exactly 10 cliques:

C = { {0, 3, 4}, {0, 1, 4}, {1, 4, 5}, {1, 2, 5}, {2, 5, 6},

{3, 4, 7}, {4, 7, 8}, {4, 5, 8}, {5, 8, 9}, {5, 6, 9}}.

A typical chromosome is presented in Figure 3.3. It has five candidate cliques, and

the only cliques are #2 and #5: C = {{4, 8, 7}, {5, 6}}. The others are eliminated

because they violate at least one of the rules: #4 contains duplicate nodes, i.e.,

node 7 is repeated; #3 is subsumed by #2; and, #1 is not completely connected.

The fitness evaluation mapped the chromosome from GP space to clique set space.

Selection of this chromosome for replacement produces the mapping back into GP

space shown in Figure 3.4. Repair prunes dead branches of the S–expression.

3 6

0 1 2

4 5

7 8 9

Figure 3.2: Example 10 node graph.

3.5.1 Simple Repair

The extraction of candidate cliques is a repair process and I investigate various

rates of return of the repaired chromosomes into the population. My conjecture is

that the genotypes of chromosomes which succinctly capture the phenotype of the



32

ExtCon

IntCon

IntCon

ExtCon

ExtCon

IntCon

7 7

IntCon

Candidate
Clique #4

7

IntCon IntCon

Candidate Candidate
Clique #2 Clique #3Clique #1

Candidate

8

43 5 7 4

ExtCon

Candidate
Clique #5

5 6

Figure 3.3: S–expression for 10 node graph.

ExtCon

IntCon

IntCon

7

IntCon

8

45 6

Figure 3.4: Repaired S–expression for 10 node graph.

chromosome are more elegant and natural. Non–coding segments can be inserted

and deleted by evolution in DNA.

The experiments use a population size of 2000 and a generation size of 600,

and are averaged over 10 trials. All statistical significance testing is done with

a two-tail t-test, with a Student distribution, and a confidence level of 0.001.

The 10 node graph (Figure 3.2) is used for clique covering. All chromosomes are

repaired, and I investigate repair rates (the percentage of repaired chromosomes

returned into the population) of 0%, 0.5%, 1.5%, 3%, 5%, and 10%. Repair rates

greater than 0.5% (small repair rates are desirable [Orvosh and Davis, 1993])



33

either degrade the performance or cause premature convergence, see Figure 3.5.

Why does repair work for GA, but not for GP?

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600

F
itn

es
s

Generation

R0 R.5Q0

R1.5Q0

R3Q0

R10Q0

R5Q0

Figure 3.5: Best fitness for base case and repair rates of 0.5%, 1.5%,
3%, 5%, and 10%.

Repair removes “dead” or non–coding bits from the chromosome, i.e., those

bits which do not contribute, either positively or negatively, to the calculation

of the fitness. As a side effect, repair also removes genetic diversity. Finally,

it removes any naturally occurring duplicate non–coding segments. Thus the

protective backup feature of these segments is being negated. Genetic Based

Encoding (GBE) research has shown that non–coding material protects building

blocks from the effects of destructive crossover. I will discuss experiments in which

a non–coding segments is inserted into the chromosome to investigate if there is

a resulting increase in fitness.

3.5.2 Repair with Duplication

Further research is performed in which the repaired chromosome is duplicated

before it is thrown back into the population. For example, the chromosome rep-



34

resented in Figure 3.6 has been duplicated into the chromosome in Figure 3.7.

While the genotypes of these two chromosome are different, the phenotypes are

exactly the same, i.e., both chromosomes evaluate to the same fitness. In effect,

a non–coding segment has been added to the chromosome.

ExtCon

ExtCon IntCon

IntCon6 2

7 8

4

Figure 3.6: Best S–expression for generation 0.

ExtCon

ExtCon IntCon

IntCon6 2

7 8

4

ExtCon

ExtCon IntCon

IntCon6

ExtCon

2

7 8

4

Figure 3.7: Generation 0’s best S–expression doubled.

Crossover is destructive for the chromosome in Figure 3.6: any point selected

for crossover will break up a building block. Crossover cannot be completely

destructive for the chromosome in Figure 3.7; if any point to the left of the root is

selected for crossover, then the right subtree will remain intact. The child which

“inherits” the right subtree will have a fitness greater than or equal to that of the



35

parent. A similar argument holds for the right side. If the root is selected as the

crossover point, then the child inheriting the whole tree still has a lower bound

of the fitness of this parent. The non–coding segment is redundant in the parent,

but it will only be redundant in the child if the other parent already contains the

coding segment.

3.5.3 Experimental Results

The chromosome in Figure 3.7 should aid in the genetic search for all of the

cliques in the graph, at least one of the children will be as fit as the repaired

parent. The curve R0 in Figure 3.8 is the learning curve for the clique cover

with no repairs taking place, with the solution found at about generation 354.

The first experiment I conduct is to inject repairs with a 0.5% probability into the

population. The curve R.5Q1 in Figure 3.8 is the result after adding one duplicate

of the coding segment during the repair process. The solution is found at about

generation 335.

The hypothesis of the utility of duplication appears to not have been signifi-

cant. If we examine the process, we see that if the repaired chromosome is selected

for crossover, the building block should last for at least one generation. Can the

building block be forced to propagate through more than one generation? Yes, by

adding more than one copy of the building block during repair.

If I assume that I can create only non–coding segments such that the total

number of instances of the coding block is a power of two, then I can perform

some worst and best case analysis as to the survivability of the coding segment.



36

In both cases, I assume that only one parent has copies of the coding segment.

If we consider the tree formed by having the “roots” of the coding subtrees as

terminals, we see it is a complete binary tree of depth log2cs, with cs being the

number of instances of coding segments. The worst case is that the block will

survive for log2cs− 1 generations (ignoring mutation). In the best case, the block

will survive for a number of generations equal to the sum of the number of edges

and the number of terminal nodes1. This is simply 3cs.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600

F
itn

es
s

Generation

R.5Q0R.5Q1R.5Q3R.5Q7

R0

Figure 3.8: Best fitness for base case and a repair rate of 0.5% with 0,
1, 3, and 7 duplications.

I conducted further experiments by adding three and seven copies of the coding

segment. The curve R.5Q3 in Figure 3.8 utilizes three backups of the coding

segment. The solution appears around generation 246, a significant savings of

108 generations. The curve R.5Q7 utilizes seven duplicates. The solution appears

around generation 171, a savings of 183 generations. Finally, in Figure 3.9, I

present the results for a repair rate of 10%. At a repair rate of 10% and with 7

1Each block lasts until all of the crossover points above it have been chosen, and none have
been chosen inside it.



37

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600

F
itn

es
s

Generation

R0

R100Q0

R100Q1R100Q3

R100Q7

Figure 3.9: Best fitness for base case and a repair rate of 10% with 0,
1, 3, and 7 duplications.

duplicates of the coding segment, there is a significant savings of 298 generations

over no repair, and 115 generations over 0.5% repair with 7 duplications.

I find that in general complete removal of non–coding segments causes pre-

mature convergence; increasing duplicates of the coding segment improves the

learning; and, as the repair rate increases, and more than one duplicate of the

coding segment is added to the chromosome, the learning increases. This con-

tradicts the earlier findings reported in Orvosh and Davis [Orvosh and Davis,

1993].

3.5.4 Conclusions

I utilize the tree structure of GP chromosomes to conduct experimentation into

duplication of coding segments. I have found that the duplication of three or

more copies of the coding segments significantly speeds up the learning process

for the clique covering problem. I have shown that with seven copies of the coding

segment, I can at least halve the computational effort of finding the optimal



38

solution and at best I have shown an 84% increase in finding the optimal solution

over no repair and duplication at all. While the detection of cliques in a graph

readily lends itself to the study of building blocks in the GP chromosome, my

results are not domain dependent.

Analysis shows that this method can work for any GP domain. Simple editing

rules for GP chromosomes have been identified [Koza, 1992]. The methods used

by compiler writers to optimize code are also applicable to “optimizing” the GP

chromosome. An example of the repair and duplication process for other domains

is shown in Figure 3.10. The parse tree to be evaluated is shown in Figure 3.10(a).

The left subtree of the root node is True, which causes the middle subtree to be a

coding segment and the right subtree to be a non–coding segment. The tree could

be pruned, leaving only the middle subtree. The IFTE (IfThenElse) function can

be used to add a duplicate of the coding segment [Angeline, 1994], as shown in

Figure 3.10(b).

IFTE

True *

.007

sin

XY

(a)

IFTE

*

(b)

.007Y.007Y

*True

Figure 3.10: IFTE promotes duplication. (a) The right subtree of the
IFTE node is non–coding. (b) A duplicate of the coding segment has
been added.



39

3.6 Conclusions

I have shown that the duplication of building blocks does more than provide pro-

tection against destructive crossover; it also provides a natural backup of good

genetic material. The duplication of building blocks enables the sharing of build-

ing blocks within the chromosome; the duplicates form redundant sections which

the search heuristic’s exploration operators can form new building blocks. In

the rest of the dissertation, we see if we can leverage this internal separation of

coding segments, duplication of coding segments, and joining of disparate coding

segments, in a similar process external to the chromosome.



CHAPTER IV

Collective Intelligence

4.1 Introduction

My goal is to utilize simple computational agents to retrieve knowledge from

the problem space, store that knowledge in a collective memory, and allow other

computational agents to manipulate that knowledge in the collective memory. To

that end, I define:

Information center : a centralized repository of knowledge. As the computa-

tional agents are simple and lack their own memory, this repository can act

as a collective memory for the whole computational agent society.

Search agents : agents which retrieve knowledge from the problem space. They

may not communicate with other agents outside of the collective memory.

They may add knowledge to the collective memory, but they may not delete

from it.

Process agents : agents which manipulate the knowledge stored in the collective

memory. They may delete knowledge from the repository. They do not have

access to the actual underlying search space.

Such a computational agent society is depicted in Figure 4.1. Note that search

agents S2 and S3 retrieve the same knowledge. A task for one of the process

40



41

agents would be to eliminate redundant knowledge.

P

S1

S2

S3

Information

Problem

Center

Space

Figure 4.1: Computational agent society employing a collective mem-
ory. Process agents are labeled with a P and search agents with a
S.

The basic principle of collective adaptation is that knowledge is gathered in

a central location by search agents. Irrelevant portions of the search space are

ignored in this focused copy of the search space. Process agents can manipulate

that collective knowledge and, through it, influence the search agents. For ex-

ample, they can eliminate some of the redundancy of the knowledge gathered by

the search agents and direct the search agents to explore in potentially rich areas

of the search space1. The collective memory allows the process agents to narrow

their attention to relevant knowledge; it helps reduce the combinatorial explosion,

allowing once prohibitive search strategies on the part of the process agents to be

economical and productive.

1As will be shown later, direction is an overstatement: the process agents can “suggest” to
the search agents where to focus their search, but the search agents are free to ignore the process
agents.



42

A computational agent society can exhibit collective behavior in two dimen-

sions: action and memory. Collective action is defined as the complex interaction

that arises out of the sum of simpler actions by the agents. These simpler actions

reflect a computational bound on either the reasoning power or memory storage

or just the capabilities of the individual agents. Collective memory is defined as

the combined knowledge gained by the interaction of the agents with both them-

selves and their environment. I combine the power of collective action with the

expressiveness of collective memory to enhance a distributed search process.

The integration of collective action and memory leads to a distributed society

of search agents which can interact via collective memory. The collective memory

allows for either communication among the agents or for a centralized search of

the gathered knowledge. I consider simple computational search agents, which are

chromosomes in a GP population. Both GA and GP represent search strategies

using a population of chromosomes. The chromosomes are considered to be au-

tonomous in the sense that they do not typically interact to find a solution. They

can be considered to be implicitly cooperative since the more fit chromosomes of

generation Gi are more likely to contribute genetic material to the chromosomes

in generation Gi+1.

Each chromosome is evaluated by a fitness function, which maps the chro-

mosome representation into a given problem domain. The evaluation of one

chromosome typically is independent of all others. A notable exception arises

in genetic–based machine learning (GBML) systems: both rules and rule-sets



43

must be maintained. In the “Michigan approach” each chromosome is a rule and

the population as a whole is the rule-set [Holland, 1986]. In these systems, the

evaluation of a single chromosome is dependent on that of the population. If a

rule is enacted only if the system is in a certain state, then it is dependent on

other rules to get the system to that state. A major concern is how does the

rule “reward” other rules for getting the system to that state, i.e., how is credit

assignment handled?

Genetic algorithms are often interpreted as competitive learning systems: the

driving force for exploring the fitness landscape is “survival of the fittest.” Some

GA applications can also be considered as cooperative learning systems [Cobb,

1993]: “Michigan style” GBML systems certainly fall into this category. Further-

more, Cobb views the fitness function as a mechanism to determine which solu-

tions are to be shared among the chromosomes, with the crossover operator as

the vehicle for which “partial solutions” are shared between chromosomes [Cobb,

1993].

4.2 Collective Memory

Collective memory is the body of common knowledge that a group shares. Com-

mon knowledge is knowledge which is either learned through interaction with the

environment or explicitly communicated from one individual to all others in the

group. Some examples of common knowledge include cars have four wheels, boil-

ing water will burn you, and James Bond always gets the girl. Indeed, the central



44

thesis of the CYC project is that the inability of computational systems to effec-

tively interact with humans (whether it be in direct communication or by reading

encyclopedia articles) is that the computational systems lack the basic common

knowledge that humans possess [Guha and Lenat, 1990].

Common knowledge models knowledge that each member of the group pos-

sesses and not the knowledge that an individual or subgroup possesses. Halpern

and Moses point out a problem of a group learning a piece of common knowledge

K: how does an individual Ai know whether another individual Aj has learned

K or not [Halpern and Moses, 1990]? Furthermore, even if Ai is able to deduce

that Aj knows K, how does Ai know that Aj knows Ai knows that fact? Without

a base condition, this recursive question can stretch on ad infinitum. With my

definition of common knowledge, each individual Ai knows that all other individ-

uals Aj,j 6=i have the knowledge and knows that every individual Aj,j 6=i knows that

every other individual Ak,k 6=j knows that knowledge and for any deeper levels of

nesting. We need not worry about whether Ai knows whether Aj knows the fact

or whether Ai knows whether Aj knows whether Ai knows the fact, etc.

The collective memory can itself be either centralized or distributed (for ex-

amples of centralized and distributed blackboard architectures see [Corkill, 1989]

and [Decker et al., 1993]). Garland and Alterman present a distributed collective

memory: agents manipulate their own slice of the collective memory [Garland and

Alterman, 1995; Garland and Alterman, 1996].



45

4.3 Computational Agent Society

As problem spaces increase in complexity, the search for a solution can overwhelm

a single computational agent. We can increase the exploratory power during the

search process by introducing more agents. The first step is parallel search; the

agents cannot communicate and thus are unable to coordinate their search efforts.

We might assign n agents to the search, but instead of examining n different

areas of the space, they might converge to one area, perhaps representing a local

minimum. The next step is to allow communication between the agents, and

thus move to distributed search. The agents are able to coordinate their actions,

maximizing their coverage of the problem space.

I wish to minimize the complexity of the agents in this society. I believe that

the knowledge gained from the interactions of a group of simple agents will be

greater than the sum of the knowledge of those same individual agents. I limit

the amount of memory that an individual agent can possess, but allow a group

memory to which any individual in the society may access. As my model does

not allow inter–agent communication and I am not concerned with the actual

dispersal of knowledge through communication (and the resultant problems as

reported in [Halpern and Moses, 1990]) all agent communication takes place to

and from this collective memory, not between individuals.

We can model the collective memory as a blackboard production system [Fen-

nell and Lesser, 1977; Nii, 1986; Corkill et al., 1986]. With the blackboard archi-

tecture, any agent may read the partial solutions contained on the blackboard. An



46

agent can only write on the blackboard if it has possession of the “chalk”. Like-

wise an agent may only delete partial solutions from the blackboard if it has the

“eraser”. When one agent writes a piece of knowledge on the blackboard, every

agent has instant awareness of that knowledge. There need not be any point–to–

point communication between two or more agents to transfer knowledge.

By limiting both the number of pieces of “chalk” and the number of “erasers”,

we can control access to the board. We can further add permission flags, much like

file permission flags, to the agents and both the chalk and the eraser. Without

write permission, an agent may not possess the chalk and hence may not add

knowledge. Without delete permission, an agent may not possess the eraser and

hence may not delete knowledge. Finally, it is also helpful to consider a read

privilege which corresponds to the ability of an agent to read knowledge from the

blackboard. Without such permission, it may not transfer knowledge from the

blackboard.

However, if an agent updates a piece of a partial solution and wants to write it

back to the global memory, questions arise as to whether the original memory has

changed since the agent retrieved it, whether another agent is trying to read that

partial solution during the update, how do agents get notified that the partial

solution has changed, etc. Such issues are discussed in basic texts on operating

systems [Tanenbaum, 1987] and computer architecture [Hwang and Briggs, 1985].

My model avoids these problems by restricting the number of pieces of chalk,

i.e., by providing a semaphore to the write process, the number of erasers, i.e.,



47

by providing a semaphore to the delete process, the amount of local memory an

agent possesses and by restricting agents to only being able to update their local

memory at a common time.

Process agents cannot manipulate the search space; they must direct the search

agents in order to sense the search space. To direct the search agents, they must

add knowledge to the collective memory and wait for a search agent to read

that knowledge. Since my model does not allow for the naming of agents, any

message posted to the collective memory can be read and acted on by all search

agents, which is in effect a broadcast. The search agents can neither search in

the collective memory nor direct other search agents. They may add knowledge

to the collective memory – resulting in directing other search or process agents.

They may not however direct their communication to a specific agent. Thus they

may not directly control the actions of another agent.

Earlier, we discussed three sets of permissions that an agent could have with

the collective memory: read, write, and delete. Since we differentiate agents by

the class they belong to and not as individuals, we assign these permissions to the

class as a whole. By definition, search agents have the write permission and do

not have the delete permission; they retrieve knowledge from the search space and

store it into the collective memory. Also by definition, process agents have the

read permission. In my model, if the process agent has the write permission, it

also has the delete permission. Thus the two independent variables of access are

whether the search agents have read permission and whether the process agents



48

have write permission.

The interactions of both the process and search agents with the collective

memory form two orthogonal dimensions of access. Both dimensions can take on

one of two discrete values: passive and active. Passive search agents may not

read from the collective memory, while active ones may read from it. Passive

process agents may not write to the collective memory, while active ones may

write to it. I reference a tuple in these dimensions by Interactivity-Processing,

where Interactivity denotes the read access of the search agents and Processing

denotes the write access of the process agents.

The four models of access are:

Passive–Passive : Process agents may not write to the collective memory and

search agents may not read from it. This models a two–tiered agent society

in which both the process and search agents are engaged in parallel search.

Also, the collective memory acts as a one way communication channel be-

tween the two agent classes: search agents may broadcast messages which

only the process agents can receive. As the process agents cannot access the

original search space, they are restricted to searching through the knowledge

retrieved by the search agents.

Passive–Active : Process agents may write to the collective memory but search

agents may not read from it. This represents a two–tiered agent society

in which the process agents are engaged in distributed search while the

search agents are engaged in parallel search. The collective memory acts



49

as a one way communication channel between the two agent classes. The

process agents are able to communicate with each other through the collec-

tive memory. Note that since agents cannot be identified by name, any such

communication is a broadcast.

Active–Passive : Process agents may not write to the collective memory and

search agents may read from it. This models a two–tiered agent society

in which the process agents are engaged in parallel search and the search

agents are engaged in distributed search. The search agents are able to

communicate with each other through the collective memory.

Active–Active : Process agents may write to the collective memory and search

agents may read from it. This models an agent society in which both the

process and search agents are engaged in distributed search. The process

and search agents are able to communicate with each other through the

collective memory. Note that since agents cannot be identified by name,

such communication is a broadcast.

In this Section of my dissertation, I will explore the addition of Active–

Passive2, Passive–Active, and Active–Active collective memory to a society com-

prised of both a single search agent, the GP system, and of a variable number

of process agents, which are simple local search algorithms. I will not explore a

Passive–Passive collective memory. The GP chromosomes have the capability of

2I have previously shown Active–Passive interaction in a theorem proving domain [Haynes
et al., 1996a].



50

adaption during the search process, which can eventually allow them to become

quite complex. I allow the explicit reuse of knowledge from one generation to the

next; unlike selection, I do not confine that transfer of knowledge to be related to

the fitness of an individual chromosome.

4.3.1 Prior Work

While the blackboard model is a useful metaphor for the collective memory em-

ployed by our system, there are many key differences between a classical black-

board system and collective adaptation. The most significant difference is the

search agents are not independent Knowledge Sources (KS). Each agent is always

executing and there is no triggering of execution via data added to the blackboard,

which removes the need for a scheduling mechanism.

The A–Teams research employs a shared memory to effect communication be-

tween a team of autonomous agents [Talukdar et al., 1983; de Souza and Talukdar,

1991]. Each agent is either a constructor or destructor; i.e., they either add or

delete knowledge from the shared memory. My work differs from theirs in that

my agents have synchronous execution and candidate solutions are dynamically

modified during the execution of the heuristic’s lifespan and not statically at the

end of the agent’s execution.

Blackboards have been used by an agent society to solve instances of the graph

coloring problem [Hogg andWilliams, 1993; Hogg and Williams, 1994]. In contrast

to our system, information is selected via a triggering mechanism and each agent

is executing the same search heuristic. Hogg and Williams determined while



51

the exchange of information was useful, if there are a large number of candidate

solutions, few of which can be extended to full solutions, then there is a decrease

in the ability of the heuristics to effectively prune unproductive branches [Hogg

and Williams, 1994].

Finally, local search heuristics have been applied to improve the population–

based search of both genetic algorithms [Hart, 1994; Hart and Belew, 1996] and

genetic programming [O’Reilly and Oppacher, 1994; O’Reilly, 1995; O’Reilly and

Oppacher, 1995a]. My work differs significantly from these research efforts in that

I use a collective memory and the local search is applied within that collective

memory and not to the chromosomes themselves.

4.3.2 Extracting Partial Solutions from the Chromosomes

The transfer of coding segments, i.e., partial solutions, from the chromosomes to

the collective memory entails extracting phenotypical knowledge from the chro-

mosomes. Such partial solutions can either be stored in the collective memory

utilizing the alphabet employed for the domain, e.g., as subtrees of the chromo-

some if there is a mapping back from phenotype to genotype3, or in a format

better suited for the collective memory. The transfer of partial solutions from the

collective memory to the chromosomes, i.e., directing the search pattern of the

search agent in the next generation, necessitates the translation of phenotypical

knowledge to genotypical format. If the partial solutions is stored as subtrees in

the collective memory, the transfer to the chromosomes can entail minor modifi-

3Which is not always possible.



52

cations to “graft” the new subtree onto the chromosome. If the partial solution

is stored in a format suited for the collective memory, then the transfer of partial

solution process can involve a domain dependent translation from the collective

memory format to a subtree, which would then be grafted onto the chromosome.

Genetic programming researchers have extracted knowledge from chromosomes,

building “libraries” or “banks” from which material could be extracted at a later

date [Tackett, 1995; Rosca and Ballard, 1996]. The knowledge is in the form of a

subtree of the chromosome. These subtrees are chosen based on their perceived

utility; i.e., they appear often in chromosomes which are highly fit. They are also

conjectured to be the blocks from which the solution is built [Tackett, 1993]. How-

ever, the extracted knowledge is not processed; the partial solution contained in

one subtree is not combined with the partial solution contained in other chromo-

somes. Tackett’s gene-bank gathers statistical information about these subtrees.

The collected subtrees are not allowed to return to the population [Tackett, 1995].

Rosca and Ballard consider an adaptive representation approach in which they

extract small subtrees and allow them to be added back into the population by

extending the alphabet [Rosca and Ballard, 1996]. Finally, Seront [Seront, 1995]

considers a concept library system in which the knowledge gained from solving one

problem, Pa, is applied to the solution of similar problems. The basic algorithm is

to save the last generation used to solve problem Pa and then use that generation

to bootstrap the new population. The new population is allowed to perform in

crossover with the library.



53

My contribution to the extraction of partial solution from the chromosome is

two–fold; I explicitly integrate the knowledge from the chromosomes and I find the

solution from that integrated knowledge, i.e., the solution need not be expressed

in a chromosome. The addition of cooperation changes the implicit distributed

search of the GP to explicit distributed search. In GP research, the goal is for the

solution to be encoded in the chromosome. The search is driven by the selection

pressure formed by the combination of the fitness evaluation and the crossover

function. From a random beginning, the chromosomes build the solution in their

genotypical representation of the domain; potentially encoding more knowledge

each generation.

With collective adaptation, the chromosome can remain relatively simple.

Since the solution can be expressed in the collective memory and not the chromo-

some, the chromosome is no longer just a vehicle to represent the solution, rather

it is a springboard from which richer parts of the search space can be explored.

The chromosome can be comprised of small and simple building blocks, which can

easily be combined.

4.4 Conclusions

In this chapter, a distributed search heuristic has been introduced. In subsequent

chapters, this heuristic is applied such that a single search agent, employing one of

the weak search heuristics, can extract coding from chromosomes into a collective

memory. These partial solutions are then shared amongst not only the search



54

agent and all process agents, but also the chromosomes inside the search agent.



CHAPTER V

Exploiting an Information Center for Exploration

5.1 Introduction

I have conducted some experiments in distributed search in the clique cover

domain and obtained promising results [Haynes, 1996; Haynes, 1997a; Haynes,

1997b; Haynes, 1997c; Haynes, 1997d]. All experiments were conducted with the

GPengine package, written by myself for research presented in my master’s the-

sis [Haynes, 1994; Haynes and Wainwright, 1995]. In this chapter I will discuss

these experiments and their results. Finally I will present the key avenues of

further research I have identified.

5.2 Passive–Active

If a chromosome contained no valid candidate cliques, I tried a repair strategy of

injecting the set of all valid cliques found to date, which is an Active–Passive col-

lective memory1. I found that such a repair strategy led to premature convergence

in a non–optimal section of the search space. It appears that the Active–Passive

collective memory technique has failed to aid in the search process. If I instead

adopt a Passive–Active collective memory technique in this domain, the search

1This would correspond to the GP being the search agent and there being no process agent.
As the search agent may read from the collective memory, a chromosome containing no valid
candidate cliques is overwritten with the collective memory.

55



56

process is greatly facilitated.

With the Passive–Active collective memory I do not repair chromosomes which

have no valid candidate cliques. Instead the search agent gathers candidate cliques

in the collective memory and the process agent removes duplicates and candidates

subsumed by larger candidates. In Figure 5.1, I present a comparison of three

search techniques for clique cover (For all of my experiments, I set α = 10, β = 9,

and γ = 0 [Haynes et al., 1996b].). The noteworthy parameters for the GP

system were a max of 600 generations2 and a population size of 2000. Each curve

shown in Figure 5.1 is an average of 10 different runs. Each of the methods

extends the previous methods. The first method (R0) is a strongly typed genetic

programming (STGP) [Montana, 1995] system modified with the type inheritance

presented in [Haynes et al., 1996b]. Chromosomes are repaired during the fitness

evaluation, but they are not returned into the population. The second search

method (R10Q7) replaces the original chromosome with the repaired one with

a probability of 0.1. The coding segment is duplicated seven times during the

replacement process. The third method (PACM) adds Passive–Active collective

memory to piece together the set of all cliques.

The average generation to discover the optimal solution is shown in Table 5.1.

On the average, PACM is 7 times more efficient than R10Q7 and 441
4
times more

efficient than R0. Finally, if I investigate how much the repair process is assisting

the Passive-Collective memory, we can see in Figure 5.2 that the addition of the

2Even if the system found the optimal solution, I let the search continue on until the maximum
number of generations had passed.



57

duplication of coding segments repair is not significant. The PACMR10Q7 curve

corresponds to the PACM curve in Figure 5.1, while the PACMR0 curve represents

a Passive–Active collective memory which does not use the repair process.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 100 200 300 400 500 600

F
itn

es
s

Generation

PACM R10Q7 R0

Figure 5.1: For the 10–node graph, comparison of best fitness per gen-
eration for no repair of chromosomes (R0), duplication of coding seg-
ments repair of chromosomes with a 10% return rate and 7 duplicates
(R10Q7), and Passive–Active collective memory (PACM), which uti-
lizes R10Q7 to drive the search agents.

Generation of
Strategy Appearance

R0 354
R10Q7 56
PACM 8

Table 5.1: Average appearance of optimal solution for different search
strategies.

The addition of Passive–Active collective memory to the search technique

significantly improves the efficiency of the search process. I want to leverage

that improvement to allow clique covering in more realistic graphs. The ten

node graph I use to illustrate the clique covering is contrived and thus facili-



58

5000

5500

6000

6500

7000

7500

0 5 10 15 20

F
itn

es
s

Generation

PACM-R10Q7

PACM-R0

Figure 5.2: For the 10–node graph, comparison of best fitness per gen-
eration for Passive–Active collective memory (PACMR10Q7), which
utilizes R10Q7 to drive the search agents, and Passive–Active collec-
tive memory (PACMR0), which utilizes no repair.

tates the search process, i.e., a known optimal solution exists. The search for

the optimal solution for this graph is not trivial with either plain GP or STGP

systems. In the Second DIMACS Challenge [Johnson and Trick, 1996] ran-

dom graphs were generated as tests for the maximum clique detection problem

(ftp://dimacs.rutgers.edu/pub/challenge). While the duplication of coding seg-

ments repair process is able to search such graphs, the plain STGP system will

prematurely converge.

A shortcoming of the data reported for these graphs is the results presented are

for the maximal clique size found, if any, but no data are presented for either the

number and composition of all cliques in the graph. Both finding the maximum

and all cliques in a graph are NP–complete [Garey and Johnson, 1979]. A brute

force algorithm is to build candidate cliques in increasing levels of size, k. Due to

NP–completeness, this algorithm is not guaranteed to be able to find a solution.



59

A viable search heuristic is to detect cliques from the Passive–Active collective

memory.

I now examine the hamming6-4.clq dataset from the DIMACS repository,

which has 64 nodes, 704 edges, and a maximum clique size of 4. From the brute

force algorithm, we know that there are 464 cliques, with a maximum fitness of

1,597,424. I present the results, in Figure 5.3, of testing both R10Q7; i.e., replace

the original chromosome with the repaired one with a probability of 0.1 and the

coding segment is duplicated seven times during the replacement process, and

PACM, i.e., add Passive–Active collective memory to piece together the set of all

cliques.

The addition of Passive–Active collective memory is significant in improving

the search process. However, the highest reported fitness of about 650,000 is only

about 40% of the maximum fitness. As the learning curve has not stabilized at

a plateau, I could allow the search to continue for more generations. I could also

increase the population size. Both methods fail to address my implicit desire to

effectively search the space in both minimal time and memory.

5.2.1 Conclusions

In this experiment, I found that the partial solution gathered by the chromosomes

focused the search space into the collective memory. Process agents were then able

to collate the knowledge gathered in the collective memory. This integration of

knowledge lead to significant speed–up in the search process over the repair and

duplication method. I then increased the complexity of the graph for which cliques



60

0

100000

200000

300000

400000

500000

600000

700000

0 100 200 300 400 500 600

F
itn

es
s

Generation

PA

R10Q7

Figure 5.3: Passive–Active collective memory search applied to the
hamming6–4 graph. In particular, comparison of best fitness per gen-
eration for duplication of coding segments repair of chromosomes with
a 10% return rate and 7 duplicates (R10Q7), and Passive–Active collec-
tive memory (PACM), which utilizes R10Q7 to drive the search agents.

were being detected. The collective adaptation method was better able to explore

the search space than the repair and duplication method.

5.3 Active–Process Agents

As mentioned in Section 5.2, the addition of Passive–Active collective adaptation is

significant in improving the search process. However, the highest reported fitness

of about 650,000 is only about 40% of the maximum fitness. As the learning curve

has not stabilized at a plateau, I stated that we could either allow the search to

continue for more generations or increase the population size. I rejected both

methods as they fail to address my implicit desire to effectively search the space

in both minimal time and memory.

A possible extension is to bestow further computational effort to the process



61

agent(s)3. The collective memory is a rich repository of knowledge and the process

agents should be able to exploit the exploration of the search agents. Imagine the

collective memory as a lens for focusing the search space into a more manageable

space; the process agents are able to confine their search to the rich areas of the

search space. The key point is that process agents are not working in the original

search space, where confinement in a rich, but narrow, area might lead to an agent

being trapped in a local minimum. As the search space has been refined for the

process agents, they should be able to avoid the combinatorial explosion found in

the original space. Thus, we can extend the process agents with simple algorithms,

which might not be effective in the face of the combinatorial explosion.

In the context of the clique covering, we consider a brute force algorithm.

1. Set i = 0 and construct a set Si of all candidate cliques of size 2, i.e., if there

is an edge between two vertices, add them as a candidate clique.

2. Loop over both the set of all candidate cliques, Si, and the set of all vertices.

(a) If a candidate clique cannot be expanded by the addition of one vertex,

then add it to the set Si+1.

(b) Else, for each vertex which expands the candidate clique, add a new

candidate clique to the set Si+1.

3. Increment i by one, and repeat until no new candidate clique is formed; i.e.,

Si = Si+1.

3The process agent in this domain just collates the knowledge, removing duplicates.



62

In the original search space, such an algorithm quickly becomes infeasible as

the problem complexity scales up. However, it can remain feasible in the focused

search space.

In my first set of experiments, I add an additional process agent to the com-

putational agent society. Each generation, after both the search agent and the

collating process agent execute, the new agent randomly selects a vertex and tries

to extend each of the candidate cliques contained in the collective memory (Ex-

pand by Random Vertex, ERV). There are some subtle differences between this

algorithm and the brute force one.

1. Not all vertices are guaranteed to be considered as expansion vertices.

2. Candidate cliques which are subsumed by larger cliques cannot be used for

exploration, i.e., the four candidate cliques, of size 3, of a candidate clique

of size 4, C4i, cannot be used to find potential candidate cliques of size 4,

C4j(j 6= i), which have three vertices in common with C4i.

3. Most importantly, the ERV algorithm is not guaranteed to find all cliques,

whereas the brute force algorithm can do so.

While point 2 is a weakness, it is also a strength; as problem complexity

increases, the system does not need to remember everything, alleviating the com-

binatorial explosion in storage. The GP can be used in this case to facilitate

exploration; as it is redundantly gathering knowledge, over generations as well

as in the same generation, it can detect new combinations of candidate cliques.

Indeed this feature discovery is the contribution of the GP subsystem.



63

The results of the Passive–Active collective adaptation with “energetic” pro-

cess agents (PA-Energetic) are shown in Figure 5.4. For comparison, the results

from our earlier Passive–Active experiments with just collation are also presented

(PA-R10Q7). Finally, the fitness corresponding to the optimal solution is pre-

sented (Set of All Cliques)4. It is evident that the extension of the computational

abilities of the process agent, with a simple rule, is significantly effective in re-

ducing the computational effort in the distributed search. On the average, the

optimal solution is found in generation 368.

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 100 200 300 400 500 600

F
itn

es
s

Generation

PA-ERV

PA-R10Q7

Set of All Cliques

Figure 5.4: Comparison of fitness per generation for Passive–Active col-
lective adaptation with two levels of activity on the part of the process
agents: 1) a simple collating agent (PA-R10Q7), and 2) an agent which,
after collation, extends by one randomly selected vertex each genera-
tion (PA-ERV). The underlying search engine is genetic programming
with duplication of coding segments repair of chromosomes with a 10%
return rate and 7 duplicates. All points represent the average of 10
runs. Also shown is the fitness associated with the set of all cliques
(Set of All Cliques).

Why is this simple extension so effective? The answer lies in the narrow-

ing of the search space into the collective memory space. The process agent is

4Determined by a brute force algorithm.



64

able to quickly explore the rich areas of the search space. Will the addition of

process agents, employing simple algorithms, always lead to an improvement in

learning? Even if we exclude bad algorithms, e.g., randomly delete one vertex

from each candidate clique, the answer is still no. While not by design, the ERV

algorithm minimizes its impact on building blocks, i.e., candidate cliques, and is

quite ambitious in that the same expansion is tried on all candidate cliques. Each

generation, the process agent employing the ERV algorithm is slowly expanding

candidate cliques.

Consider instead a less ambitious algorithm, which maximizes locality in at-

tempting to detect new candidate cliques. In the Merge Adjacent Candidate

Cliques, MA, algorithm, I employ two additional process agents in conjunction

with the collating one. After the collation, the first new process agent sorts all

candidate cliques, based on vertex ordering within the candidate clique, and then

the second one merges adjacent candidate cliques if the union of the vertices forms

a new candidate clique.

The MA algorithm certainly seems feasible, but if we examine Figure 5.5, we

find that it actually performs worse than Passive–Active collective adaptation.

Why? The process agent which merges the candidate cliques is forming larger

candidate cliques than the agent which employed the ERV algorithm. As a result

smaller building blocks are not being exploited by the process agent. If n cliques

of size k have a core candidate clique of size i, i < k, once one of the n cliques is

found, the core candidate clique is not available for merging. Also, by maximizing



65

locality, this algorithm ensures that multiple mergers cannot take place unless the

core candidate clique comprises the first i vertices of each candidate clique. It is

not exploiting the exploration of the search agents.

I can test my hypothesis by considering a third algorithm, Merge Random

Candidate Clique, MR. Once again I employ two process agents: one to sort and

one to merge. However, now the merger randomly selects one of the candidate

cliques and tries to merge it with every other candidate clique in the collective

memory. As can be seen from Figure 5.5, this algorithm is significantly better

than Merge Adjacent (MA) and worse than Expand Random Vertex (ERV). It

performs better than MA because it does not maximize locality; each candidate

clique has the opportunity to merge with the randomly selected one. It performs

worse than ERV because, like MA, it is taking too big a step during the merge

process.

5.3.1 Conclusions

We can increase the processing power of the search agents, but there might be

physical or economical restrictions on the processing capabilities of the search

agents. If there are such restrictions on the search agents, we can add simple

algorithms to the process agents, capitalizing on the reduced search space. The

advantage of considering a reduced search space is that simplistic algorithms,

which are not economical in the original search space, can be used to effectively

prune the search space farther.



66

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 100 200 300 400 500 600

F
itn

es
s

Generation

PA-ERV

PA-MR

PA-MA

PA-R10Q7

Set of All Cliques

Figure 5.5: Comparison of fitness per generation for Passive–Active
collective adaptation with different levels of activity on the part of the
process agents: 1) a simple collating agent (PA-R10Q7), 2) agents,
which after collation, sort then merges adjacent candidate cliques if
they are connected (PA-MA), 3) agents, which after collation, sort and
merge one randomly selected candidate clique with all other compati-
ble candidate cliques in the collective memory, and 4) an agent which,
after collation, extends by one randomly selected vertex each genera-
tion (PA-ERV). The underlying search engine is genetic programming
with duplication of coding segments repair of chromosomes with a 10%
return rate and 7 duplicates. All points represent the average of 10
runs. Also shown is the fitness associated with the set of all cliques
(Set of All Cliques).

5.4 Random Search versus Genetic Programming

We can argue the majority of the savings might be from the addition of collective

memory. Why then do we need genetic programming at all? Would not a blind

search perform just as well? My intuitive answer is no; the GP algorithm guides

the search agents in their exploration of the search space and it allows the agents

to adaptively learn about their environment. While the search agent is no longer

needed to discover the optimal solution, i.e., we need not wait until it is expressed

in one of the chromosomes, it is needed to discover novel building blocks. As



67

a byproduct of striving to find the optimal solution, the GP selection pressure

facilitates the discovery of such building blocks.

To confirm my expectations, I conducted a set of Passive–Active collective

memory search experiments using random search as an engine for the search agent.

In the first generation, chromosomes are constructed as in the GP system, i.e., a

maximum depth of 4. The chromosomes are then evaluated by the same fitness

function as in the GP system. The next generation is randomly constructed with a

maximum depth of 10 and its chromosomes are evaluated. This process is repeated

until the maximum number of generations has passed.

The results of the Passive–Active collective memory search with random search

as an engine are shown in Figure 5.6. I also present the results from the Passive–

Active experiments with R10Q7 and R0 as the engines. PA-RS is significantly

better than both PA-R10Q7 and PA-R0, which is contrary to my expectation

that the detection of building blocks, by the GP subsystem, can be exploited to

guide the exploration of the search space.

My hypothesis fails because the solution need not be represented in the chro-

mosomes. If we examine the fitness of the underlying search engines, in Figure 5.7,

we see that R10Q7 outperforms both R0 and RS. Thus the R10Q7 search engine is

able to detect building blocks and can express the solution inside the chromosome.

Both the R0 and RS engines are not able to effectively detect building blocks.

While the PA-R0 performance curve is significantly worse than the PA-RS

curve, the R0 performance curve is not significantly different from the RS. Why



68

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 100 200 300 400 500 600

F
itn

es
s

Generation

PA-RS

PA-R10Q7

PA-R0

Set of All Cliques

Figure 5.6: For the hamming6-4 graph, comparison of fitness per gen-
eration for Passive–Active search with three underlying search engines:
1) GP with duplication of coding segments repair of chromosomes with
a 10% return rate and 7 duplicates (PA-R10Q7), 2) GP with no repair
(PA-R0), and 3) random search (PA-RS). All points represent the av-
erage of 10 runs. Also shown is the fitness associated with the set of
all cliques.

does the performance for PA-R0 and PA-RS not correlate with the underlying

search engine? The random search subsystem is exploring the search space and

the R0 is confined to a small section of the search space. Due to its stochastic

nature, random search can make large jumps through the search space. While

the GP algorithm is also stochastic in nature, the selection pressure caused by

crossover between the more fit chromosomes, confines the jumps that R0 can

make. It is the addition of the duplication of coding segments which allows the

R10Q7 subsystem to effectively search via building blocks.

Also, when considering Figure 5.6, the reader should not jump to the conclu-

sion that random search is better than GP. The findings in Figure 5.7 dispute this

claim: if we just consider the underlying search engines, GP with repair signifi-

cantly outperforms RS. It is only when we look at the addition of Passive–Active



69

0

2000

4000

6000

8000

10000

0 100 200 300 400 500 600

F
itn

es
s

Generation

R10Q7

RS

R0

Figure 5.7: For the hamming6-4 graph, comparison of best fitness
per generation for underlying search engines of three Passive–Active
searches: 1) GP with duplication of coding segments repair of chro-
mosomes with a 10% return rate and 7 duplicates (R10Q7), 2) GP
with no repair (R0), and 3) random search (RS). All points represent
the average of 10 runs. Also, only every tenth point is shown to aid
visibility.

collective adaptation that the system employing random search is better than the

one employing GP and repair.

5.4.1 Thought Experiment

I conjecture that the effectiveness of Passive–Active collective adaptation, with

random search as its engine, will decrease as the problem complexity increases.

The hamming6-4.clq graph is sparsely connected, has a small number of vertices,

and a maximal clique size of four. I can illustrate my conjecture with a thought ex-

periment; let us consider how many candidate cliques can be formed in completely

connected graphs of size 8, 16, 32, and 64. I can enumerate all candidate cliques

that can be expressed in all legitimate (i.e., they honor the type requirements for

the alphabet employed) trees formed with a maximum depth of 3.



70

In Table 5.2, I present P8i , the percentage of candidate cliques of size 8 which

can be generated from these trees for the various graphs. I also present E8i , the

expected number of candidate cliques of size 8 which will be randomly generated

in a population of 2000 chromosomes over the course of 600 generations (E8i =

Pr8i × 2000 × 600). Finally, I make an assumption that all of these randomly

generated candidate cliques are unique. I can now calculate the ratio of randomly

generated candidate cliques of size 8 to the total possible number of candidate

cliques of size 8. In Figure 5.8, we see that if we plot complete graph sizes against

the ratio of expressed versus possible candidate cliques of size 8, we approximate

exponential decay.

Graph Size Percent Expressed Expected Ratio

8 1.03E−4 124 3.06E−3

16 6.05E−3 7265 1.40E−5

32 0.021 25120 5.92E−8

64 0.036 42984 2.41E−10

Table 5.2: For various completely connected graphs and all possible
legitimate parse trees of depth 0 to 3, I report: 1) percentage of candi-
date cliques of size 8 which can be expressed in the trees, 2) expected
number of unique candidate cliques of size 8 to appear over the course
of random search, and 3) ratio of expected versus possible candidate
cliques of size 8.

If I increase the maximum depth allowed in the parse trees, I will increase the

number of candidate cliques of size 8 which can be expressed. Notice however

if I set d to be the maximum depth, the limitation we observed for candidate

cliques of size 8 will now apply for candidate cliques of size 2(d + 1). Also, as

we increase d, we increase our memory requirements and we quickly run into the



71

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0 10 20 30 40 50 60 70

R
at

io
 o

f e
xp

re
ss

ed
 c

liq
ue

s 
to

 p
os

si
bl

e 
cl

iq
ue

s 
of

 s
iz

e 
8

Size of Complete Graph

Figure 5.8: Comparison of completely connected graphs to the ratio
of expressed candidate cliques of size 8 to possible candidate cliques of
size 8, in parse trees of maximum depth 3. (Y-axis is log scale)

combinatorial explosion in memory space.

Thus my results from the analysis of the thought experiment still hold; we

see that as we increase complexity (measured here by graph size), we decrease the

probability of expressing candidate cliques via random search. I must return to the

evolutionary pressure of GP to express candidate cliques as complexity increases.

As a candidate clique is discovered, the GP is able to explore by extending the

knowledge contained in that building block to detect other candidate cliques.

For example, consider a candidate clique of size 7, C7, which is randomly

generated in the initial population. The emergent pressure of the GP can use C7

to search for all other viable candidate cliques of size 7 which are mainly comprised

of nodes in C7. Either the crossover or mutation operators can cause a few nodes

to be changed and thus quite possibly discover a new candidate clique. Under

my previous assumption of complete connectivity, this will always occur. Also,

the GP can effectively utilize C7 to search for all candidate cliques of size 8 for



72

which C7 forms a core set of nodes. With random search, this potential to exploit

exploration is lost.

The belief in emergent selection and the schema theorem [Holland, 1975], i.e.,

the building over time of the solution piece by piece from the elementary blocks,

shields us from the fact that for cliques of maximum size 4 and parse trees of max-

imum depth 10, random search will effectively generate candidate cliques. That

random generation will be very redundant, but given enough time will visit all

possible candidate cliques. If we were mainly interested in expressing the solu-

tion in the chromosomes, then random search would fair poorly: the probability of

expressing all 464 cliques in one chromosome is very small. But the addition of col-

lective memory allows the search systems to distribute the discovery of candidate

cliques to all of the chromosomes generated over time. Since we expect random

search to generate all candidate cliques for the hamming6-4.clq graph, it should

be no surprise that the addition of collective memory expresses the solution.

5.4.2 Fully Connected Graph of Size 16

I tested my thought experiment with a fully connected graph with 16 vertices.

To make the calculations manageable in the thought experiment, we considered

trees with a maximum depth of 3. Consistent with the parameters of the previous

experiments, I utilize an initial generation maximum depth of 4 and subsequent

generation maximum depth of 10. Both candidate cliques of size 16 and duplicate

of the coding segments can readily be generated in trees of depth 10. It should

be noted that with only one clique, the solution must be expressed inside a chro-



73

mosome. Since the process agents do not actively search within the collective

memory, only the search agent can combine partial solutions.

In Figure 5.9 I present the results of Passive–Active search with both GP

(PA-R10Q7) and random search (PA-RS) as the search engines5. The Passive–

Active search with the GP based subsystem is significantly more effective than

the random search based one. The PA-RS can discover small candidate cliques

faster than PA-R10Q7, but the discovery of larger candidate cliques needs the

direction given by PA-R10Q7. Furthermore, if we examine the performance of just

the underlying search engines, see Figure 5.10, we see that the R10Q7 explores

significantly better than RS. It is able to improve its solution at any generation

by building on solutions from previous generations. (The spikes shown for RS are

when one of the trials randomly expresses the clique of size 16.)

A potential critique against this experiment is that the solution must be ex-

pressed inside the chromosome and not in the collective memory. (As can be seen

by the way the curve PA-R10Q7 in Figure 5.9 is tracked by the curve R10Q7

in Figure 5.10.) When we decrease the cooperation of the system, we will see a

decline in the effectiveness of random search as an engine. The GP is still able

to cooperate by sharing solutions via crossover. This critique falls apart if we

consider a graph consisting of four fully connected cliques of size 16. Clearly if

random search is not able to express one such clique during the alloted time, it

will not be able to express four such cliques, even independently. The GP system

5Due to the range limits for doubles, I scaled the fitness calculation.



74

will however be able to begin to express each clique.

0

2

4

6

8

10

0 100 200 300 400 500 600

F
itn

es
s

Generation

PA-RS

PA-R10Q7

Set of All Cliques

Figure 5.9: For the Fully Connect 16 graph, comparison of fitness per
generation for Passive–Active search with two underlying search en-
gines: 1) GP with duplication of coding segments repair of chromo-
somes with a 10% return rate and 7 duplicates (PA-R10Q7), and 2)
random search (PA-RS). All points represent the average of 10 runs.
Also shown is the fitness associated with the set of all cliques.

5.4.3 Conclusions

Collective adaptation utilizes cooperation to harness the competitive pressure of

genetic programming. With collective adaptation, a GP based search engine is

able to effectively search as problem complexity is increased. While the coopera-

tion is necessary to exploit the solutions found by the underlying search engine, I

have shown that the competition of GP is still needed to guide the exploration of

the search process. A random search engine is more effective than a GP based one,

but only at low problem complexity. As the complexity increases, the competitive-

ness of the GP search engine is more effective than the uncontrolled exploration

of random search.



75

0

2

4

6

8

10

0 100 200 300 400 500 600

F
itn

es
s

Generation

RS

R10Q7

Set of All Cliques

Figure 5.10: For the Fully Connect 16 graph, comparison of fitness
per generation for underlying search engines of two Passive–Active
searches: 1) GP with duplication of coding segments repair of chro-
mosomes with a 10% return rate and 7 duplicates (R10Q7), and 2)
random search (RS). All points represent the average of 10 runs. Also
shown is the fitness associated with the set of all cliques.



76

5.5 Transfer of Control Knowledge

In my experiments to detect cliques with a Passive–Active collective memory

search, I discovered while I can scale up the problem complexity, the effectiveness

of the GP to guide the search agent in its exploration was initially in question.

I conjecture that as the complexity rises, the need for improving the directed

search on the part of the search agent, i.e., by the GP, will also rise. How then

can I improve the exploration of the search space? My collective adaptation

abstracts communication between both the agent classes and individuals both

between and in those classes. Given the nature of my problem encoding, I rule

out communication between individuals. Although it should be noted that this

is effectively what the crossover process in the GP is accomplishing. I want to

explore communication between the two agent classes: search and process.

Furthermore, I wish to restrict such communication to be only considered while

the search agents are in the collective memory. There exists an analogy between

the computational agent society and insect societies: the collective memory is the

colony, the process agents are those insects which do not leave the confines of the

colony, and the search agents are those insects which leave the colony. The search

agent, as embodied by the chromosomes of the GP algorithm, leave the colony

during fitness evaluation, return to it after the evaluations to deposit knowledge,

the process agents manipulate both the new and old knowledge, and finally the

search agent gets new directions. Until now, these directions came solely from the

crossover process. It is at this point in the life cycle of the search agent that I



77

wish to introduce communication between the process and search agents.

Keeping with my desire to allow complex group level behavior to arise from

simple individual behavior, I want to minimize the complexity that I add to the

system. Thus I allow the process agents to direct the search agents by a transfer

of knowledge during the crossover process. I allow a percentage of the crossover

operations to be not between two individual chromosomes, but rather between one

chromosome from the population and one created from the collective memory. Due

to the stochastic nature of chromosome selection for crossover, I can have either

none, one, or two chromosomes generated from the collective memory engage in

any of the crossovers between two chromosomes. What I actually ensure is that

a certain percentage of the chromosomes engaging in crossover come from the

collective memory.

When such a transfer is to occur, I randomly select k candidate cliques (for

the results reported in this section, I set k = 2) from the collective memory

and construct an additional chromosome from them. The candidate cliques are

duplicated in the chromosome following the repair strategy presented in Chapter 3

and in [Haynes, 1996]. The parameters for the duplication follow that for the

duplication of coding segments used while repairing and replacing chromosomes

during fitness evaluation; for our purposes this means seven duplicates of the set

of k candidate cliques are added to the chromosome.

The graph I am testing is the hamming6-4.clq dataset from the DIMACS repos-

itory, which has 64 vertices, 704 edges, and a maximum clique size of 4. From a



78

brute force algorithm, we know that there are 464 cliques, with a maximum fitness

of 1,597,424. The noteworthy parameters for the GP system are a maximum of

600 generations, a population size of 2000, probability of mutation is 0.1, proba-

bility of crossover is 0.9, a maximum depth of 4 for the initial generation, and a

maximum depth of 10 after crossover or mutation6. For the clique covering, I set

β = 9. In my experiments, I select crossover into the collective memory with a

probability of p = 0.1 and then I randomly select k = 2 candidate cliques.

In Figure 5.11, I present the results of an experiment utilizing Active–Active

collective adaptation which has a GP search engine with repair and duplication

of chromosomes (AA-R10Q7). For comparative purposes, I also present my re-

sults with an equivalent Passive–Active collective adaptation system (PA–R10Q7).

While it appears that the AA-R10Q7 does find the optimal solution, on the av-

erage it actually only attains 99.9% of the optimal solution. In 70% of the test

cases, it does find the optimal solution.

My conjecture that knowledge transfer from process agents to search agents

improves the overall search effort is well founded. Now we need to examine if there

is an improvement in the performance of the underlying search engine, i.e., is there

an improvement in the expression of the solution in the chromosomes? I report

the performance of the underlying search engine for the Active–Active collective

adaptation engine (R10Q7/AA) in Figure 5.12. I also present the results for the

corresponding Passive–Active system (R10Q7/PA). It is clearly apparent that the

6My research is geared to improving the search process while holding the GP control param-
eters constant. As such, the reported parameters are not optimized for the task at hand and
are actually taken from parameters I have used in another domain [Haynes et al., 1995b].



79

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 100 200 300 400 500 600

F
itn

es
s

Generation

AA-R10Q7

PA-R10Q7

Set of All Cliques

Figure 5.11: For the hamming6-4 graph, comparison of fitness per
generation for Active–Active collective adaptation (AA-R10Q7) ver-
sus Passive–Active collective memory search with a simple collating
agent (PA-R10Q7). The underlying search engine is genetic program-
ming with duplication of coding segments repair of chromosomes with
a 10% return rate and 7 duplicates. All points represent the average of
10 runs. Also shown is the fitness associated with the set of all cliques
(Set of All Cliques).

knowledge transfer has increased the exploration of the chromosomes. While the

optimal solution is still not close to being expressed inside the chromosomes, the

increased exploration is magnified to allow the optimal solution to be expressed

inside the collective memory.

5.5.1 Conclusions

By engaging the chromosomes in crossover with the collective memory, I transfer

locally optimized knowledge back to the search agent. Hence, we can say the

process agents are directing where in the search space the search agents should

explore. While the improvement in the distributed search was not as great as the

addition of local optimization by the process agents, it did significantly improve

the exploration of the search agents and produced better results than no exchange



80

0

20000

40000

60000

80000

100000

120000

0 100 200 300 400 500 600

F
itn

es
s

Generation

R10Q7/PA

R10Q7/AA

Figure 5.12: For the hamming6-4 graph, comparison of best fitness
per generation for underlying search engine of Active–Active col-
lective adaptation (R10Q7/AA) versus underlying search engine of
Passive–Active collective memory search with a simple collating agent
(R10Q7/PA). The underlying search engine in both cases is genetic pro-
gramming with duplication of coding segments repair of chromosomes
with a 10% return rate and 7 duplicates. The difference between the
two systems is that the Active–Active collective adaptation transfers
knowledge back into the GP subsystem. All points represent the aver-
age of 10 runs.

of control information.



81

5.6 Conclusions

5.6.1 Lessons in Scaling

In Figure 5.13 we present the big picture of what we have learned from detecting

cliques as the problem complexity increases. In general we find that while the

redundant collection and transfer of information from the search agents to the

process agents via the collective memory are effective in exploring the search

space, with just a little more effort on the part of either agent class, we can find

the optimal solution. In particular, either the process agents must explore the rich

areas of the search space as identified by the search agents or the search agents

must allow themselves to be guided in their exploration by the process agents.

We also can see in Figure 5.13 that the addition of repair with duplication to

the Passive-Active collective memory search is significant compared to no repair

at all in the quality of the performance curve, i.e. PACM-R10Q7 versus PACM-

R0. In Figure 5.2 of Section 5.2, we saw that this was not the case; i.e., previously

the addition was not significant. As we also discussed in Section 5.4, as the

complexity of the problem increases, the effectiveness of underlying search engine

influences the effectiveness of the collective memory search. With low complexity

problems, the collective memory search is able to exploit even weak underlying

search engines.



82

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0 100 200 300 400 500 600

F
itn

es
s

Generation

AACM-R10Q7

PACM-Random Search

PACM-R10Q7

PACM-R0

Set of All Cliques

PACM-ERV

Figure 5.13: Comparison of fitness per generation for the five major
search systems (unless explicitly noted, systems have an underlying
GP engine with duplication of coding segments repair of chromosomes
with a 10% return rate and 7 duplicates) : 1) Active–Active collective
memory search (AACM-R10Q7), 2) Passive–Active collective memory
search with an underlying GP engine with no repair (PACM-R0), 3)
Passive–Active collective memory search (PACM-R10Q7), 4) Passive–
Active collective memory search with an underlying Random Search
engine (PACM-Random Search), and 5) Passive–Active collective mem-
ory search with process agents employing the ERV algorithm (PACM-
ERV). All points represent the average of 10 runs. Also shown is the
fitness associated with the set of all cliques (Set of All Cliques).

5.6.2 Applicability

The models of collective memory search are effective if building blocks of the

solution can be identified. In clique detection, candidate cliques form the building

blocks. The identification of building blocks in genetic programming is in general a

difficult task [O’Reilly, 1995; Rosca and Ballard, 1996; Haynes, 1996]. In part this

is due to the domain dependent nature of the alphabet, i.e. the members of the

function and terminal sets7. As we saw in Chapter 3, the repair of chromosome by

7Building block are easier to find in GA chromosomes, but the typical string representation
is the binary alphabet and of fixed length. As such, GA building blocks are at the structural
level, whilst GP building blocks are at the semantical level [Haynes, 1996].



83

duplication of coding segments strategy holds promise in automating the detection

of building blocks. If the system designer can identify function nodes that allow

for addition of non-coding segments without changing the semantical meaning of

the chromosome, the detection of building blocks can be automated.



CHAPTER VI

Collective Adaptation in Search Heuristics

6.1 Introduction

Royal Road functions manipulate the fitness landscape to provide controlled ex-

periments into genetic algorithm (GA) theory [Mitchell et al., 1992]. Variations

of clique detection in a graph, e.g., finding both the max clique [Soule et al., 1996]

and the clique cover [Haynes, 1996], have been proposed as naturally occurring

Royal Road functions. However, it has been shown that the clique domain does

not serve as a Royal Road function for binary encoded GAs [Soule et al., 1996].

If I vary the representation used in the chromosome, then the clique domain does

satisfy the necessary criteria to be a Royal Road function for GA. Besides allowing

a researcher to investigate the formation of building blocks, Royal Road functions

can be used to test GAs against other paradigms [Mitchell et al., 1992].

Soule and Foster have tried to positively correlate different graph families to

various measures of GA hardness [Soule and Foster, 1997]. Soule and Foster have

used a GA encoding to investigate the relation between graph characteristics and

GA hardness [Soule and Foster, 1997]. They used graphs from the Center for

Discrete Mathematics and Theoretical Computer Science (DIMACS) at Rutgers

University. These graphs were generated as part of a DIMACS challenge on graph

problems [Johnson and Trick, 1996]. Five measures of hardness were employed:

84



85

an epistasis measure [Davidor, 1991], a fitness distance correlation [Jones and

Forrest, 1995]; graph size, graph density, and, relative clique size. They were

unable to associate any of these measures with the difficulty of the GA to solve a

particular graph.

I present a systematic approach to determining the relevant characteristics. I

investigate the correlation between graph complexity and the ease of which various

search heuristics, random search (RS), hill climbing (HC), simulated annealing

(SA), and genetic algorithms, detect cliques in a given graph1. I investigate graphs

for which simple search heuristics should easily determine both the max clique and

the clique cover. I systematically vary both the number of cliques and their size

in a graph. As expected, I find that the effectiveness decreases as I increase the

number and size of cliques.

Within this chapter, I empirically validate that both duplication of coding seg-

ments and collective adaptation can be applied to all of the weak search heuristics.

I investigate in detail changing the rate of repair for the GA heuristic and verify

that a repair rate of p = 0.1 significantly improves the other weak search heuris-

tics. For the collective adaptation, I examine two configurations: 1) the addition

of collective memory with no duplication of coding segments, no process agents,

and no transfer of partial solutions back into the chromosomes; and, 2) the addi-

tion of collective memory with the duplication of coding segments, process agents

employing the ERV strong heuristic, and transfer of partial solutions back into

1The various search heuristics were presented in the Introduction. Note that the random
search employed in this chapter is different than the one employed in Chapter 5



86

the chromosomes. As found in the earlier chapters, both duplication of coding

segments and collective adaptation are instrumental in allowing the detection of

better partial solutions.

6.2 FC Family of Graphs

I want to investigate the relationship between graph characteristics and GA hard-

ness. Unlike Soule and Foster, I do not examine the families of graphs present in

the DIMACS repository. I want to construct graphs for which we can characterize

properties. With the FC family of graphs, I vary the number of cliques present

and their cardinality. For any given graph, I restrict all cliques to have the same

cardinality and consider sizes of 1, 2, 4, 8, 16, 32, and 64. I vary the number

of cliques to be 1, 2, 4, 8, 16, 32, and 64. I consider the 49 graphs which result

from the permutations of number and cardinality of cliques. I label a graph by

first the number of cliques and then the cardinality. Thus fc2-64.clq refers to a

graph with 2 cliques each of cardinality 64. With the FC family of graphs, I have

set the following properties: 1) the number of cliques is known beforehand; 2)

the cardinality of each clique is known beforehand, so the maximal clique size is

also known; and, 3) the cliques are disjoint. I do not want to mislead the reader,

because of property 3, the clique cover and max clique for each of these graphs

can be found via greedy algorithms in linear time.

If an heuristic is aware of these properties, especially the last one, they can be

exploited such that each of the three NP–complete problems become P:



87

Partition into cliques: Since we know that the cliques are disjoint, it follows

immediately that this problem is solvable in polynomial time as illustrated

by the greedy algorithm in Figure 6.1.

Given V, the set of vertices

Set P, the partition, to be empty

while (vertex v in V) {

Set C, the current clique, to be empty

Randomly select v, without replacement, a vertex from V

Insert v into C

Set W, the examined vertices, to be empty

while (vertex u in V) {

Randomly select u, without replacement, a vertex from V

if ( ( union(u, C) ) is a complete subgraph ) then {

Insert u into C

} else {

Insert u into W

}

}

Insert C into P

Insert W into V

}

Figure 6.1: Greedy algorithm for partition into cliques.

Covering by cliques: The greedy algorithm in Figure 6.1 also finds the clique

cover.

Clique: After using the greedy algorithm in Figure 6.1 to determine the partition

P, determine the cardinality of each clique in P , and return the maximum.

However, in general the greedy algorithm in Figure 6.1 will not run in polynomial

time: the determination of the disjointness of the clique set is itself NP–complete

and is actually the problem of Partition into cliques.



88

If examine the characteristics of a Royal Road function as put forth in [Mitchell

et al., 1992]:

1) All of the desired building blocks are known in advance.

2) The landscape can be varied systematically.

3) The global optimum, and all local optimum, can be enumerated.

we see that this family of graphs satisfy the conditions to make it a Royal Road

function2. Also, it should be remembered that the original Royal Road functions

were meant to be problems which the GA should find easy and which would allow

the comparison of performance across multiple heuristics.

With the example graph shown in Figure 6.2, I can list all of the building

blocks:

C = { {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3},

{4, 5}, {4, 6}, {4, 7}, {5, 6}, {5, 7}, {6, 7},

{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3},

{4, 5, 6}, {4, 5, 7}, {4, 6, 7}, {5, 6, 7},

{0, 1, 2, 3}, {4, 5, 6, 7}}.

Since we know all of the candidate cliques, we can calculate the fitness for all

interesting combinations of building blocks.

My goal in designing this family of graphs is to have graphs which are easy

2The connection between Royal Road functions and clique detection is explored in Ap-
pendix 5.



89

2

0 1

3

4 5

76

Figure 6.2: Example graph, consisting of 2 fully connected cliques of
cardinality 4.

for hill climbers to solve and for which pruning heuristics will not work3. To

facilitate hill climbers, I labeled the vertices such that all vertices in a clique were

adjacent. The easiest pruning heuristics for max clique are to 1) discard vertices

in a candidate clique which have less incidence than all other vertices in that

candidate clique and, 2) discard those candidate cliques for which each node has

less incidence than the cardinality of the maximum clique found so far. Since all

vertices belong to a clique and all cliques have the same cardinality, neither of

these pruning heuristics will succeed in reducing the size of the space of partial

solutions.

6.3 Testing Hardness

In Table 6.1, I present 5 different hardness measures as applied to the 49 different

benchmark graphs. If we first define, nc(G) to be the number of cliques in G and

cc(G) to be the cardinality of the cliques in G, then for a graph G, I define:

hs(G) to be the hardness as measured by the graph size, which is simply the

3An irony of Royal Road functions is while they are designed to facilitate the hierarchical
solving of problems via building blocks, in practice they hinder the integration of building blocks,
e.g., hitchhiking [Mitchell et al., 1992]. With clique detection, the space of partial solutions can
become too large for building blocks to be effectively combined.



90

number of vertices in G. For this graph family,

hs(G) = nc(G) ∗ cc(G).

If hs(Gi) > hs(Gj), then Gi should be harder to solve than Gj . Also note

that graphs which share a bottom to top diagonal, e.g., fc4-1.clq, fc2-2.clq,

and fc1-4.clq, will have the same value for hs(G).

hd(G) to be the hardness as measured by the graph density. If G were maximally

complete, there would be an edge between each vertex in G, totalling CN
2

edges. Thus, hd(G) is the ratio of actual edges in G to the total possible.

For this graph family,

hd(G) =
nc(G) ∗ C

cc(G)
2

CN
2

.

If hd(Gi) < hd(Gj), then Gi should be harder to solve than Gj . Also note

that graphs which share a bottom to top diagonal, e.g., fc4-1.clq, fc2-2.clq,

and fc1-4.clq, will have the same value for hd(G).

hmcs(G) to be the hardness as measured by the ratio of the max clique size to the

graph size. For this graph family,

hmcs(G) =
cc(G)

hs(G)
.

Notice that cc(G) will cancel out in both the numerator and the denomina-



91

tor, resulting in

hmcs(G) =
1

nc(G)
.

hmce(G) to be the hardness as measured by the ratio of max clique size to the

number of edges in G. For this graph family,

hmce(G) =
cc(G)

nc(G) ∗ C
cc(G)
2

.

If hmce(Gi) < hmce(Gj), then Gi should be harder to solve than Gj . Also

note that graphs which occupy a row will have the same value for hmce(G).

hnce(G) to be the hardness as measured by the ratio of the number of cliques to

the number of edges in G. For this graph family,

hnce(G) =
nc(G)

nc(G) ∗ C
cc(G)
2

.

Again, by canceling, we get

hnce(G) =
1

C
cc(G)
2

.

If hnce(Gi) < hnce(Gj), then Gi should be harder to solve than Gj . Also note

that graphs which occupy a column will have the same value for hnce(G).

For the FC family of graphs, hmcs(G) is independent of the max clique size

and hnce(G) is independent of the number of cliques.



92

1 2 4 8 16 32 64

1 hs 1 2 4 8 16 32 64
hd 1 2 0.6667 0.2857 0.1333 0.06452 0.03175

hmcs 1 1 1 1 1 1 1
hmce 1 1 1 1 1 1 1
hnce 1 1 0.1667 0.03571 0.008333 0.002016 0.000496

2 hs 2 4 8 16 32 64 128
hd 2 0.6667 0.2857 0.1333 0.06452 0.03175 0.01575

hmcs 1 0.1667 0.2143 0.2333 0.2419 0.246 0.248
hmce 0.5 0.5 0.5 0.5 0.5 0.5 0.5
hnce 1 1 0.1667 0.03571 0.008333 0.002016 0.000496

4 hs 4 8 16 32 64 128 256
hd 0.6667 0.2857 0.1333 0.06452 0.03175 0.01575 0.007843

hmcs 0.1667 0.03571 0.05 0.05645 0.05952 0.06102 0.06176
hmce 0.25 0.25 0.25 0.25 0.25 0.25 0.25
hnce 1 1 0.1667 0.03571 0.008333 0.002016 0.000496

8 hs 8 16 32 64 128 256 512
hd 0.2857 0.1333 0.06452 0.03175 0.01575 0.007843 0.003914

hmcs 0.03571 0.008333 0.0121 0.01389 0.01476 0.0152 0.01541
hmce 0.125 0.125 0.125 0.125 0.125 0.125 0.125
hnce 1 1 0.1667 0.03571 0.008333 0.002016 0.000496

16 hs 16 32 64 128 256 512 1024
hd 0.1333 0.06452 0.03175 0.01575 0.007843 0.003914 0.001955

hmcs 0.008333 0.002016 0.002976 0.003445 0.003676 0.003792 0.003849
hmce 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625
hnce 1 1 0.1667 0.03571 0.008333 0.002016 0.000496

32 hs 32 64 128 256 512 1024 2048
hd 0.06452 0.03175 0.01575 0.007843 0.003914 0.001955 0.000977

hmcs 0.002016 0.000496 0.0007382 0.0008578 0.0009173 0.000947 0.0009618
hmce 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125 0.03125
hnce 1 1 0.1667 0.03571 0.008333 0.002016 0.000496

64 hs 64 128 256 512 1024 2048 4096
hd 0.03175 0.01575 0.007843 0.003914 0.001955 0.000977 0.0004884

hmcs 0.000496 0.000123 0.0001838 0.000214 0.0002291 0.0002366 0.0002404
hmce 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563
hnce 1 1 0.1667 0.03571 0.008333 0.002016 0.000496

Table 6.1: Hardness factors for 49 fully connected graphs. Key: hs is
the graph size; hd is the graph density; hmcs is the ratio of max clique
size to graph size; hmce is the ratio of max clique size to number of
edges; and, hnce is the ratio of number of cliques to number of edges.



93

6.4 Experimental Setup

For the fitness function, I set α = 10, β = 9, and γ = 0. For the GA and GP

experiments the relevant parameters are as follows: the probability that a group

marker would appear was pm = 0.1, double point crossover, with a rate of 0.7 per

pair of parents, mutation with a probability of 0.01 per bit, maximum number

of generations of 256, and the population size was 64. I used linear scaling, with

the maximum expected offspring being 2.0 [Goldberg, 1989]. The chromosomes

for the GA were limited to 256 positions and those for the GP were fixed to a

max depth size of 10, i.e., 2047 max nodes. The other heuristics had a probability

of 0.01 per bit for mutation. Furthermore, I allow each of the non-GA heuristics

to have 16,384 evaluations (generations multiplied by population size). For all of

these heuristics, I report the results in terms of an epoch, i.e., each 64 evaluations.

With the given chromosome length, it is not possible to represent the clique

covers for all of the graphs. However, it is possible to represent all of the max

cliques for all of the graphs. Also, due to the fully connected nature of the cliques

and each clique having the same cardinality, I could utilize a binary encoding and

reduce the problem to the GA-easy 1s problem. However, I am trying to discover

how these graphs are representative of naturally occurring graphs. As such, I pick

an encoding that is not aware of the nature of the graphs. If we consider that

a clique with cardinality 64 has C64
32 = 1.83 × 1010 possible candidate cliques of

cardinality 32, we see that we must pick a reasonable chromosome length.

In each experiment, I present the results of 20 runs by each of the heuristics.



94

I had two observations I could present: the average of the last generation and the

maximum average over all generation. I chose the latter result so that the results

would not be biased towards hill climbers and away from random search. Instead

of examining the fitness values, as I did in the previous chapters, I am interested

in the max clique found and the ratio of the cover of cliques found to the clique

cover. As both the max clique and clique cover are known for the FC family of

graphs4, I can state the search power of an heuristic via observing either variable.

6.5 The Base Heuristics

In Appendix A, I present the average of 20 runs for the various weak search heuris-

tics for the FC family of graphs. The heuristics implement neither duplication

of coding segments nor collective adaptation. I report the average of the max

clique found for the 49 graphs in Table A.1 and the average of the clique cover

in Table A.2. I am interested in determining the capabilities of each heuristic,

i.e., which of the heuristics are better than the others. I analyze the max clique

found, the clique cover, and the total time to run the experiment. The means and

standard deviations are presented in Table 6.2.

Ignoring the variations produced by the different graph variations, we run a

one-way ANOVA to test the hypothesis, using a significance level of α = 0.01,

that

H0 All heuristics means are the same.

4But not for the DIMACS graphs.



95

Max Clique Time
Clique Cover

RS 4.42 (4.84) 0.22 (0.37) 21.58 (3.10)
HC 6.94 (7.90) 0.39 (0.46) 37.26 (18.97)
SA 6.83 (7.97) 0.36 (0.45) 38.41 (21.92)
GA 3.88 (4.42) 0.27 (0.41) 39.03 (17.28)
GP 3.16 (2.06) 0.23 (0.40) 207.31 (165.48)

Table 6.2: Base heuristics, mean of 20 runs, std. dev. in parenthesis.

Ha At least 2 heuristics have different means.

We reject H0 for each of the max clique found, the clique cover, and the total

time to run the experiment. We perform the Scheffe follow-up test to determine

significant differences in means at a level of α = 0.01.

Over the FC family of graphs, we find:

• HC and SA are better at detecting the max clique than RS, GA, and GP.

• RS is better at detecting the max clique than GA and GP.

• A Duncan follow-up test with α = 0.01 reveals GA is better at detecting

the max clique than GP and there is no significant difference between the

GA and RS.

• HC and SA are better at detecting the clique cover than the other heuristics.

• GP takes significantly longer to run than all others.

• HC, SA, and GA take significantly longer to run than RS.

As the fitness evaluation code is the same for each heuristic, the time difference for

the GP must be a result of having to recursively evaluate each node in the parse



96

tree. Since the SA approaches RS when the temperature is high and becomes a

hill climber when the temperature decreases, it should be no surprise that HC

and SA perform similarly when no local optima are present.

With the given representation, we expect building blocks to evolve and we

do not expect the evolution of hitchhikers; for the clique cover, there are no

hitchhikers. The poor performance of all heuristics can be attributed to the large

search spaces; to integrate partial solutions, they must first be found. While

increasing the chromosome length will boost the search, there exists a limit to the

chromosome length for even moderately sized graphs.

6.5.1 Hardness

For each graph and each heuristic, we calculated the correlation coefficient and

examined scatter plots. There was no correlation between the performance of any

of the heuristics and any of the various hardness measures. If hmce(G) were a good

measure, then as we increase the number of cliques in a graph while holding the

cardinality constant, the solution quality should also stay constant. hs(G) and

hd(G) are also poor measures of hardness. For example, fc8-16.clq and fc16-8.clq

should be equally difficult to solve, yet we see in Table A.1 that HC comes closer

to the max clique for fc8-16.clq (found 7.7 out of 8) than fc16-8.clq (found 5 out

of 16). Also, fc8-16.clq finds 1.5×10−7 of the clique cover versus the 0.0011 of the

clique cover for fc16-8.clq. Finally, if hnce(G) were a good measure of hardness,

then as we increased the cardinality of the cliques in a graph while holding the

number of cliques constant, the solution quality should also stay constant. From



97

observing the data in both Tables A.1 and A.2, it appears the actual hardness is

a linear function of the clique size and the number of cliques, i.e., increasing both

makes the resultant graph harder to solve.

We see that as we increase either cardinality or number of cliques in the graphs,

performance decreases. Also, for a cardinality of 64, chromosome length does not

seem to be a factor. For example, the numbers of vertices in both fc1-64.clq and

fc2-64.clq are less than half the chromosome length. The average max clique found

for HC was 41 and 29 respectively. The clique cover of the was 1.7 × 10−21 and

2.1× 10−51 respectively. Even for complete solutions which could be expressed in

the chromosome, the space of partial solutions can not be effectively represented

in the chromosome.

6.5.2 Conclusions

I have examined the characteristics which make clique detection a good domain for

testing various weak search heuristics: random search, hill climbing, simulated an-

nealing, genetic algorithms, and genetic programming. Clique detection is difficult

for all of these heuristics. I systematically vary the complexity of graphs and dis-

cover that neither relative maximum clique size, relative number of cliques, graph

density, nor graph size are good measures of hardness for these search heuristics.

While I can improve the heuristics by adding in either local search or a collective

memory, I still would like to determine an accurate measure of hardness for either

a given graph or family of graphs.



98

6.6 Duplication of Coding Segments

Except for the GP, each of the search methods utilize the same encoding for the

chromosomes. Even though a tree format is not used, coding and non–coding

segments can be determined, which will allow for repair via duplication of coding

segments. Since each chromosome is of a fixed length, unlike a GP chromosome,

I must ensure that each position is filled during the duplication process. Thus,

unlike the GP algorithm, this heuristic inserts as many copies of the coding seg-

ments as possible. If there is not enough room for an additional entire copy of the

coding segments, then only enough material as necessary is copied in for the last

duplication.

The addition of duplicates of the coding segment drastically changes the na-

ture of the search heuristics. With GA and GP, the repair and duplication is

done before selection, thus there is no guarantee that a repaired chromosome will

contribute genetic material towards the next generation. However, with RS, the

repaired chromosome will be selected as the next candidate solution. As long

as the fitness of the repaired chromosome, which had already been perturbed, is

greater than that of the previous chromosome, it will be selected for both HC

and SA. Finally, even if it has a lesser fitness, SA may still accept it as the new

candidate solution.

Also, RS is no longer truly random; a backup copy of the coding segment can

be kept, making RS a modified version of HC. Since RS perturbs the chromosome

via the GA mutation operator, i.e., it does not completely regenerate the chro-



99

mosome, one or more copies of the coding segments can remain intact. If the new

chromosome has a higher fitness, then it is selected and only if all of the copies

of the coding segment are changed, and destructively at that, will a lower fitness

chromosome be selected. On the average, after duplication of coding segments

has taken place, the fitness of the candidate solution should tend to either stay

the same or increase.

Since I do not control the number of duplicates injected into the chromosome,

the key control parameter is the rate at which chromosomes are repaired. In

Section 6.6.1 I present the results of adding duplication of coding segments to

the various search heuristics and with a repair rate of p = 0.1. In Section 6.6.2

I present the results duplication of coding segments for GA chromosomes having

repair rates of 0%, 0.5%, 1%, 5%, 10%, 25% and 50%.

6.6.1 The Heuristics

In Appendix B, I present the average of 20 runs for the various weak search

heuristics for the FC family of graphs. The heuristics implement duplication of

coding segments, with a repair rate of p = 0.1, but not collective adaptation. I

report the average of the max clique found for the 49 graphs in Table B.1 and

the average of the clique cover in Table B.2. I am interested in determining

the capabilities of each heuristic, i.e., which of the heuristics are better than the

others. I also want to know for which heuristics is the duplication of coding

segments significant over the base heuristic. I analyze the max clique found, the

clique cover, and the total time to run the experiment. The means and standard



100

Max Clique Time
Clique Cover

RRS 7.12 (5.70) 0.35 (0.44) 36.94 (17.87)
RHC 9.40 (8.56) 0.39 (0.46) 32.71 (16.26)
RSA 9.48 (8.56) 0.39 (0.46) 46.45 (22.90)
RGA 6.47 (7.73) 0.35 (0.45) 75.24 (23.69)
RGP 3.11 (1.91) 0.26 (0.41) 269.82 (202.04)

Table 6.3: Duplication of coding segment heuristics, mean of 20 runs,
std. dev. in parenthesis.

deviations are presented in Table 6.3.

Ignoring the variations produced by the different graph variations, we run a

one-way ANOVA to test the hypothesis, using a significance level of α = 0.01,

that

H0 All heuristics means are the same.

Ha At least 2 heuristics have different means.

For this test, I utilize both the base and duplication of coding segments versions

of each heuristic. We reject H0 for each of the max clique found, the clique cover,

and the total time to run the experiment. We perform the Scheffe follow-up test

to determine significant differences in means at a level of α = 0.01.

Over the FC family of graphs, we find:

• The addition of duplication of coding segments, with a repair rate of p = 0.1

to a heuristic, makes a heuristic better at detecting the max clique than the

base heuristic. (Except for GP.)

• RRS is better at detecting the max clique than RGP, but not RGA.



101

• The addition of duplication of coding segments, with a repair rate of p = 0.1

to a heuristic, makes no difference for detecting the clique cover than the

base heuristic. (Except for RS.)

• A Duncan follow-up test with α = 0.01 reveals RGA is better at detecting

the clique cover than GA.

• RGP takes significantly longer to run than all others.

• RGA takes significantly longer to run than RRS, RSA, and RHC.

Adding duplicates of coding segments allows both the RGA and RRS algo-

rithms to detect the clique cover at the same level as RHC and RSA. The dupli-

cation of coding segments increased the number of partial solutions for each of

these heuristics, but only RHC and RSA were better at expanding these partial

solutions, i.e., they found higher cardinality max cliques.

The addition of duplication of coding segments improves all heuristics except

GP! While I shall revisit this point later, I conjecture that the subtree crossover

and mutation of GP is less powerful than the operators used by the other heuris-

tics. I am also asking a different question here than in Chapter 3; the original

experiments asked if the duplication of coding segments were significant in reduc-

ing the time until the best solution was found and these experiments determine if

the maximum solution found is significantly different. These results follow those

with the hamming6-4.clq graph for the GP; duplication of coding segments alone

did not scale well with increased complexity.



102

Max Clique Time
Clique Cover

R0 3.88 (4.42) 0.27 (0.41) 39.03 (17.28)
R05 5.77 (5.67) 0.33 (0.44) 67.24 (16.88)
R1 6.09 (6.25) 0.35 (0.44) 66.02 (15.80)
R5 6.51 (7.45) 0.35 (0.44) 71.90 (20.35)
R10 6.47 (7.73) 0.35 (0.45) 75.24 (23.69)
R20 6.55 (8.08) 0.36 (0.45) 76.56 (26.93)
R25 6.56 (8.23) 0.36 (0.45) 77.27 (27.86)
R50 6.54 (8.28) 0.36 (0.45) 79.15 (30.61)

Table 6.4: Varying the repair rate for the GA heuristic, mean of 20
runs, std. dev. in parenthesis.

6.6.2 Varying GA Repair Rate

In Appendix C, I present the average of 20 runs for the GA heuristics, with various

repair rates, for the FC family of graphs. I consider the following eight repair rates:

R0 (p = 0.0), R05 (p = 0.005), R1 (p = 0.01), R5 (p = 0.05), R10 (p = 0.10), R20

(p = 0.20), R25 (p = 0.25), and R50 (p = 0.50). I report the average of the max

clique found for the 49 graphs in Table C.1 and the average of the clique cover

in Table C.2. I am interested in determining whether the addition of repair and

duplication of coding segments are significant. I analyze the max clique found, the

clique cover, and the total time to run the experiment. The means and standard

deviations are presented in Table 6.3.

Ignoring the variations produced by the different graph variations, we run a

one-way ANOVA to test the hypothesis, using a significance level of α = 0.01,

that

H0 All repair rate means are the same.



103

Ha At least 2 repair rates have different means.

We reject H0 for each of the max clique found, the clique cover, and the total

time to run the experiment. We perform the Scheffe follow-up test to determine

significant differences in means at a level of α = 0.01.

Over the FC family of graphs, we find:

• The addition of duplicates of the coding segments results in the detection

of larger max cliques than no duplication at all.

• Repair rates of p = 0.20, p = 0.25, and p = 0.50 result in better clique

covers than all other repair rates.

• A Duncan follow-up test with α = 0.01 reveals the addition of duplicates

of the coding segments results in the detection of more of the clique cover

than no duplication at all.

• The addition of duplicates of the coding segments results in longer run times

than no duplication at all.

• Repair rates of p = 0.20, p = 0.25, and p = 0.50 take longer to run than all

other repair rates.

• Repair rates of p = 0.05 and p = 0.10 take longer to run than p = 0.0,

p = 0.005, and p = 0.1.

• A Duncan follow-up test with α = 0.01 reveals that p = 0.50 takes longer

to run than all other repair rates.



104

At worst, the repair and duplication algorithm forces the runtime to approx-

imately double in time. As the performance results show, this penalty is well

worth the effort. Also notice that since all chromosomes must be translated from

genotype to phenotype, the bulk of the time must be spent in translating back

from phenotype to genotype. As pointed out in the last section, I am ignoring the

time taken to find the optimal solution. As Figures C.1-C.3 show for the fc4–8.clq

graph, the rate at which the best fitness (Figure C.1), generational clique cover

(Figure C.2), and max clique(Figure C.3) increase are influenced by the repair

rate.

6.7 Collective Adaptation

The next step in our study of the weak search heuristics is to add collective adap-

tation. From the earlier research with GP, we saw that adding duplication of

coding segments to collective adaptation was better than strict collective adapta-

tion. As such, I first consider adding a collective memory, a process agent which

collates, and the duplication of coding segments. I then investigate the various

configurations of collective adaptation on just the GA heuristic. Finally, I examine

collective adaptation on just the GP heuristic.

When comparing an observation for a heuristic which employs collective mem-

ory against a heuristic which does not, I simply compare the collective memory

observation to the equivalent chromosomal observation. This comparison is fair

in the sense that the best values found in the chromosomes are compared against



105

Max Max Clique Clique Time
Clique Clique (CM) Cover Cover (CM)

CMRS 7.12 (5.70) 7.72 (6.48) 0.35 (0.44) 0.40 (0.46) 1985.87 (10384.92)
CMHC 9.40 (8.56) 10.13 (9.42) 0.39 (0.46) 0.42 (0.46) 3893.12 (20262.36)
CMSA 9.48 (8.56) 10.22 (9.50) 0.39 (0.46) 0.42 (0.46) 4029.34 (18027.44)
CMGA 6.47 (7.73) 9.70 (11.43) 0.35 (0.45) 0.38 (0.45) 98.41 (313.07)
CMGP 3.10 (1.91) 10.45 (12.63) 0.25 (0.41) 0.37 (0.44) 266.15 (198.24)

Table 6.5: Collective Adaptation and duplication of coding segment
heuristics, mean of 20 runs, std. dev. in parenthesis.

those in the collective memory. I also make sure to compare chromosomal values

against each other.

6.7.1 The Heuristics

In Appendix D, I present the average of 20 runs for the various weak search

heuristics for the FC family of graphs. The heuristics implement both duplication

of coding segments, with a repair rate of p = 0.1, and collective adaptation.

I report the average of the max clique found for the 49 graphs in Table D.1

(Table D.3 for inside the collective memory) and the average of the clique cover

in Table D.2 (Table D.4 for inside the collective memory). I am interested in

determining the capabilities of each heuristic, i.e., which of the heuristics are better

than the others. I also want to know for which heuristics is collective adaptation

significant over the base heuristic. I analyze the max clique found (both in the

chromosome and the collective memory), the clique cover (both in the chromosome

and the collective memory), and the total time to run the experiment. The means

and standard deviations are presented in Table 6.5.

Ignoring the variations produced by the different graph variations, we run a



106

one-way ANOVA to test the hypothesis, using a significance level of α = 0.01,

that

H0 All heuristics means are the same.

Ha At least 2 heuristics have different means.

For this test, I utilize both the collective adaptation with duplication of coding

segments versions of each heuristic. We reject H0 for each of the max clique found

(both in the chromosome and the collective memory), the clique cover (both in the

chromosome and the collective memory), and the total time to run the experiment.

We perform the Scheffe follow-up test to determine significant differences in means

at a level of α = 0.01.

Over the FC family of graphs, we find:

• CMHC and CMSA are better at finding the max clique in the chromosome

than all others.

• CMRS and CMGA are better at finding the max clique in the chromosome

than CMGP.

• All heuristics are better at finding the max clique in the chromosome than

CMRS.

• All heuristics are better at finding the clique cover in the chromosome than

CMGP.

• All heuristics are equal at finding the clique cover in the collective memory.



107

• CMHC and CMSA take significantly longer to run than all others.

• A Duncan follow-up test with α = 0.01 reveals CMRS takes significantly

longer to run than both CMGA and CMGP.

Notice while CMRS is better at representing solutions inside the chromosome

than is CMGP, CMGP is better at representing them inside the collective memory.

I also want to know for which heuristics is collective adaptation significant

over the base heuristic. I analyze the max clique found (both in the chromosome

and the collective memory), the clique cover (both in the chromosome and the

collective memory), and the total time to run the experiment. For this test, I

utilize both the base and the collective adaptation with duplication of coding

segments versions of each heuristic. We reject H0 for each of the max clique

found, the clique cover, and the total time to run the experiment. We perform

the Scheffe follow-up test to determine significant differences in means at a level

of α = 0.01.

Over the FC family of graphs, we find the addition of collective adaptation

and the duplication of coding segments, with a repair rate of p = 0.1 to a heuristic

• make a heuristic better at detecting the max clique inside the chromosome

than the base heuristic. (Except for GP.)

• make a heuristic better at detecting the max clique inside the collective

memory than than the base heuristic inside the chromosome.



108

6.7.2 Genetic Algorithm

The truly interesting experiments to be conducted involve the addition of collec-

tive memory. For the heuristics I consider in this section, I utilize a collective

adaptation system employing a GA as the weak search engine. I will present the

results of the following experiments.

GA: The base GA system with neither duplication of coding segments nor col-

lective memory.

CM: Collective memory is added, along with duplication of coding segments.

However, the process agent just collates.

PA: Add an additional process agent employing the Expand by Random Vertex

(ERV) heuristic presented in Section 5.3.

AA: Add communication back to the chromosomes in the form of crossover into

the collective memory as defined in Section 5.5.

LG64: Two additional process agents are added to employ a Merge Random

Clique to All, (MRCA), similar to the Merge Adjacent Candidate Cliques,

MA, heuristic presented in Section 5.3. Instead of trying to merge adjacent

cliques, MRCA randomly selects one clique in the collective memory and

attempts to merge it with all cliques in the collective memory. They utilize

the same heuristics employed by the process agents.

LG128: This experiment increases the population size from 64 to 128.



109

Max Max Clique Clique Time
Clique Clique (CM) Cover Cover (CM)

CA 3.88 (4.42) 3.82 (4.34) 0.27 (0.41) 0.27 (0.41) 39.03 (17.29)
PA 6.45 (7.75) 6.45 (7.75) 0.33 (0.44) 0.34 (0.45) 108.86 (448.03)
AA 6.47 (7.73) 9.70 (11.43) 0.35 (0.45) 0.38 (0.45) 98.41 (313.06)
LG64 11.70 (14.93) 11.71 (14.93) 0.47 (0.46) 0.47 (0.46) 73.13 (21.37)
LG128 11.85 (15.26) 11.85 (15.27) 0.52 (0.47) 0.52 (0.47) 147.11 (43.96)
MG64 18.09 (21.18) 18.09 (21.18) 0.65 (0.41) 0.67 (0.41) 86.46 (46.22)
MG128 18.14 (21.25) 18.14 (21.25) 0.70 (0.38) 0.74 (0.37) 193.58 (168.61)

Table 6.6: Collective Adaptation applied to GA, mean of 20 runs, std.
dev. in parenthesis.

MG64: The same as LG64, except the chromosomes also engage in local search

at the end of their evaluation.

MG128: The same as LG128, except the chromosomes also engage in local search

at the end of their evaluation.

In Appendix E, I present the average of 20 runs for the GA with the various

collective adaptation strategies outlined above and for the FC family of graphs.

I report the average of the max clique found for the 49 graphs in Table E.1 (Ta-

ble E.3 for inside the collective memory) and the average of the clique cover in

Table E.2 (Table E.4 for inside the collective memory). I am interested in deter-

mining the cumulative addition of extra capabilities extends the search. I analyze

the max clique found (both in the chromosome and the collective memory), the

clique cover (both in the chromosome and the collective memory), and the total

time to run the experiment. The means and standard deviations are presented in

Table 6.6.



110

Ignoring the variations produced by the different graph variations, we run a

one-way ANOVA to test the hypothesis, using a significance level of α = 0.01,

that

H0 All heuristics means are the same.

Ha At least 2 heuristics have different means.

We reject H0 for each of the max clique found (both in the chromosome and the

collective memory), the clique cover (both in the chromosome and the collective

memory), and the total time to run the experiment. We perform the Scheffe

follow-up test to determine significant differences in means at a level of α = 0.01.

Over the FC family of graphs, we find:

• MG64 and MG128 are better at finding the max clique in the chromosome

than all other variants.

• LG64 and LG128 are better at finding the max clique in the chromosome

than CA, PA, and AA.

• A Duncan follow-up test with α = 0.01 reveals that CA and PA are better

at finding the max clique in the chromosome than AA.

• MG64 and MG128 are better at finding the max clique in the collective

memory than all other variants.

• LG64, LG128, CA, and PA are better at finding the max clique in the

chromosome than AA.



111

• A Duncan follow-up test with α = 0.01 reveals that LG64 and LG128 are

better at finding the max clique in the chromosome than CA and PA.

• A Duncan follow-up test with α = 0.01 reveals that PA are better at finding

the max clique in the chromosome than CA.

• MG64 and MG128 are better at finding the max clique in the chromosome

than all other variants.

• LG64 and LG128 are better at finding the max clique in the chromosome

than CA, PA, and AA.

• CA and PA are better at finding the max clique in the chromosome than

AA.

• A Duncan follow-up test with α = 0.01 reveals that LG128 is better at

finding the max clique in the chromosome than LG64.

• MG64 and MG128 are better at finding the max clique in the collective

memory than all other variants.

• LG64 and LG128 are better at finding the max clique in the collective mem-

ory than CA, PA, and AA.

• CA and PA are better at finding the max clique in the collective memory

than AA.

• A Duncan follow-up test with α = 0.01 reveals that MG128 is better at

finding the max clique in the chromosome than MG64.



112

• A Duncan follow-up test with α = 0.01 reveals that LG128 is better at

finding the max clique in the chromosome than LG64.

• MG128 takes significantly longer to run than all others.

• LG128 takes significantly longer to run than all others except MG128 and

PA.

• PA, AA, and MG64 take significantly longer to run than CA and LG64.

• A Duncan follow-up test with α = 0.01 reveals that LG128 also takes sig-

nificantly longer to run than PA.

• A Duncan follow-up test with α = 0.01 reveals that PA also takes signifi-

cantly longer to run than LG64.

6.7.3 Conclusions

Each heuristic presented in this section increases the cooperation employed in the

system and as we increase the cooperation, we almost always see an increase in

performance. Large increases are seen in both the clique cover and the max clique,

indicating that not only do these heuristics home in on the max clique, they are

able to distribute the search process over all of the cliques in the graph.

6.8 Genetic Programming

As we saw in the previous sections, the base GP did not fare as well as the other

algorithms. In this section, I will repeat the basic experiments of the earlier



113

chapters to see if the results hold with the FC family of graphs. I will present the

results of the following experiments:

B64: The base GP system with neither duplication of coding segments nor col-

lective memory. The population size is 64.

B256: The base GP system with neither duplication of coding segments nor col-

lective memory. The population size is 256.

R64: The base GP system with duplication of coding segments and a repair rate

of p = 0.1. The population size is 64.

R256: The base GP system with duplication of coding segments and a repair

rate of p = 0.1. The population size is 256.

C64: Collective memory is added, along with duplication of coding segments.

However, the process agent just collates. The population size is 64.

C256: Collective memory is added, along with duplication of coding segments.

However, the process agent just collates. The population size is 256.

X64: Add communication back to the chromosomes in the form of crossover into

the collective memory as defined in Section 5.5. The population size is 64.

X256: Add communication back to the chromosomes in the form of crossover

into the collective memory as defined in Section 5.5. The population size is

256.



114

Max Max Clique Clique Time
Clique Clique (CM) Cover Cover (CM)

B64 3.16 (2.06) 3.16 (2.06) 0.23 (0.40) 0.23 (0.40) 207.31 (165.48)
B256 3.74 (2.51) 3.74 (2.51) 0.25 (0.41) 0.25 (0.41) 1036.88 (893.04)
R64 3.11 (1.91) 3.11 (1.91) 0.26 (0.41) 0.26 (0.41) 269.82 (202.04)
R256 3.60 (2.36) 3.60 (2.36) 0.28 (0.43) 0.28 (0.43) 1013.37 (728.42)
C64 3.10 (1.91) 10.45 (12.63) 0.25 (0.41) 0.37 (0.44) 266.15 (198.24)
C256 3.46 (2.16) 7.52 (7.50) 0.29 (0.42) 0.34 (0.44) 1348.35 (843.64)
X64 5.46 (5.44) 5.57 (5.85) 0.27 (0.41) 0.29 (0.42) 260.99 (186.34)
X256 4.83 (3.68) 4.85 (3.70) 0.31 (0.44) 0.34 (0.44) 736.08 (429.79)

Table 6.7: Base, duplication of coding segments, and collective adapta-
tion applied to GP, mean of 20 runs, std. dev. in parenthesis.

In Appendix F, I present the average of 20 runs for the GA with the various

GP variants outlined above and for the FC family of graphs. I report the average

of the max clique found for the 49 graphs in Table F.1 (Table F.3 for inside the

collective memory) and the average of the clique cover in Table F.2 (Table F.4

for inside the collective memory). I am interested in determining the cumulative

addition of extra capabilities extends the search. I analyze the max clique found

(both in the chromosome and the collective memory), the clique cover (both in the

chromosome and the collective memory), and the total time to run the experiment.

The means and standard deviations are presented in Table 6.7.

Ignoring the variations produced by the different graph variations, we run a

one-way ANOVA to test the hypothesis, using a significance level of α = 0.01,

that

H0 All heuristics means are the same.

Ha At least 2 heuristics have different means.



115

We reject H0 for each of the max clique found (both in the chromosome and the

collective memory), the clique cover (both in the chromosome and the collective

memory), and the total time to run the experiment. We perform the Scheffe

follow-up test to determine significant differences in means at a level of α = 0.01.

Over the FC family of graphs, we find:

• X64 is better at finding the max clique in the chromosome than all other

variants.

• X256 is better at finding the max clique in the chromosome than all other

variants but X64.

• B256 is better at finding the max clique in the chromosome than B64, R64,

and C64.

• A Duncan follow-up test with α = 0.01 reveals that R256 is better at finding

the max clique in the chromosome than B64, R64, and C64. With the

Duncan test, there is no difference between R256 and B256.

• C64 is better at finding the max clique in the collective memory than all

other variants.

• C256 is better at finding the max clique in the collective memory than all

other variants but C64.

• X64 is better at finding the max clique in the collective memory than B64,

B256, R64, and R256.



116

• X256 is better at finding the max clique in the collective memory than B64,

R64, and R256.

• A Duncan follow-up test with α = 0.01 reveals that X64 is better at finding

the max clique in the collective memory than X256.

• A Duncan follow-up test with α = 0.01 reveals that X256 is better at finding

the max clique in the collective memory than B256.

• X256 is better at finding the clique cover in the chromosome than B64.

• A Duncan follow-up test with α = 0.01 reveals that X256 is also better at

finding the clique cover in the chromosome than B256, R64, and C64.

• A Duncan follow-up test with α = 0.01 reveals that C256 is also better at

finding the clique cover in the chromosome than B64.

• C64 is better at finding the clique cover in the collective memory than B64,

B256, R64, R256, and X64.

• C256 is better at finding the clique cover in the collective memory than B64,

B256, and R64.

• X256 is better at finding the clique cover in the collective memory than B64

and B256.

• A Duncan follow-up test with α = 0.01 reveals that C256 is also better at

finding the clique cover in the collective memory than R256 and X64.



117

• A Duncan follow-up test with α = 0.01 reveals that X256 is also better at

finding the clique cover in the collective memory than R64, R256, and X64.

• A Duncan follow-up test with α = 0.01 reveals that X64 is better at finding

the clique cover in the collective memory than B64.

• C256 takes significantly longer to run than all others.

• B256 and R256 take significantly longer to run than all but C256.

• X256 takes significantly longer to run than B64, R64, C64, and X64.

• A population size of 256 takes significantly longer to run than those with

size of 64.

From the follow up tests, we see that the addition of collective memory pro-

duces better max clique sizes than no collective memory at all. Increasing the

number of chromosomes did not significantly improve the search for either max

clique or clique cover. This result indicates that either these population sizes are

too small for the GP based search or that GP based search is in general ineffective.

My conjecture is that the GP subtree based crossover operation is not as effective

as the GA double point crossover operation. Recent research has shown that other

GP crossover operators can be more effective than subtree based crossover [Haynes

et al., 1995a; Angeline, 1996; Angeline, 1997; Haynes and Sen, 1997].



118

6.9 Conclusions

Even though the Schema Theorem, i.e., the Building Block Hypothesis, has not

been applied to RS, HC, and SA, we see that each of these heuristics can utilize

building blocks, which I have defined as coding segments, to form larger sub–

solutions for a problem.



CHAPTER VII

Conclusions

One problem in building a GP Schema Theorem is in the definition of a building

block. GP building blocks differ from GA building blocks in that a schema s

can be expressed multiple times in a given chromosome, each instance of s may

not be highly fit, and multiple genotypical schemata may map into the same

phenotypical schema. I have defined a GP building block as a coding segment

which contributes positively to the fitness of the chromosome, which implies a

building block can only be detected if and only if its fitness can be determined

apart from that of the chromosome. My main contribution in this dissertation is

to apply this definition to share building blocks both within the chromosome and

outside of all chromosomes inside a collective memory.

The clique domain allows for carefully controlled experiments to test the shar-

ing of building blocks. It encompasses three NP–complete problems, partition

into cliques, covering by cliques, and clique, and has the property that any other

NP–complete problem may be mapped to any of these three problems. A key

characteristic of the clique domain is that the problems can be decomposed into

independent sub–problems, each of which can be individually solved and then in-

dependent solutions can then be integrated to arrive at the final overall solution.

Each of these solutions to sub–problems forms a building block in the phenotypical

119



120

space.

I have found that the duplication of coding segments, i.e., building blocks,

facilitates the discovery of larger/other building blocks. During the first crossover,

one copy acts as a springboard for further exploration, while the duplicates act as a

backup memory, allowing the chromosome to at least keep its previous solution. I

empirically demonstrate that building blocks of consistently above average fitness

and resilience to disruption can be assured.

I have also found that collective adaptation, i.e., the gathering of building

blocks in a collective memory, greatly facilitates the discovery of building blocks.

In problems which can be decomposed into sub–problems, a common strategy to

enhance the search is divide and conquer, i.e., assign the sub–problems to different

processes and then integrate the results. Collective adaptation enhances the GP

and GA search by allowing such cooperation. As building blocks are detected in

the chromosomes, they are gathered into the collective memory. Chromosomes

may then access the partial solutions gathered by other chromosomes.

Also, non–GP processes, e.g., strong search heuristics, can extend that knowl-

edge, creating building blocks which were not constructed in the chromosomes.

These new building blocks may cause a problem if the building blocks are phe-

notypical and genotypical: there may be more than one genotype which maps

to a given phenotype. While a general method exists for mapping back building

blocks found in the chromosomes1, such a mapping may not be possible for every

1Simply store the first subtree found which corresponds to the phenotype.



121

domain.

As cooperation is increased in the collective adaptation search system, we

see an increase in performance in both the underlying search engine and the

overall search process. The detection and sharing of building blocks is integral

to collective adaptation and central to this increase in performance. While the

Schema Theorem itself will not account for the sharing of building blocks outside

the chromosomes, the research presented in this dissertation certainly shows that

building blocks do exist in GP and can be hierarchically combined.



CHAPTER VIII

Future Work

I have identified several promising avenues of research in which I can extend the

work I have presented in this dissertation:

Adaptive GP crossover: My hypothesis as to why the GA system is able to

perform so well with limited resources, as compared to the GP, is that the

standard GA crossover is more effective than the standard GP crossover. In

particular, the sub–tree swapping of GP is geared towards exchanging the

leaf nodes of the chromosomes (On the average, half of the nodes are in the

leaf nodes and three–fourths are in the leaf nodes and the level above.). I

plan to investigate an adaptive probability distribution for selecting nodes

for crossover. I believe I will see a significant increase in performance with

such a mechanism.

Niching: The problems found in the clique domain naturally illustrate the need

for niching in GA populations. For example, consider the max clique prob-

lem when there is a graph composed of disjoint cliques, 3 of cardinality 8,

1 of cardinality 9. I would expect that the greedy algorithm presented in

Figure 8.1 would find the max clique about 27% of the time, depending on

the initial node selected. If I increase the number of cliques of cardinality 8,

I expect the success to decrease: 7: 14%, 15: 7%, 31: 4%, and 63: 2%. We

122



123

could modify the greedy algorithm such that each node is the initial node

selected into C, but this algorithm will only work if the cliques are disjoint.

select a node in G and put it in C

put in S all other nodes

while ( nodes in S ) {

select and remove a node from S and add it to C

if the size of the clique in C increases, keep that node

else discard it

}

Figure 8.1: Greedy algorithm for max clique.

Just as the greedy algorithm selects one “hill”, i.e., clique, to explore, so

do the hill climbing algorithms. As we increase both the number of cliques

present and the cardinality of those cliques, as in the 49 benchmark graphs

in Chapter 6, GA, without collective adaptation, also has a hard time both

determining the clique cover and the max clique. This difficulty is a result

of there being too many cliques to explore and an increase of destructive

crossover.

One mechanism for distributing the search amongst all of the cliques would

be to introduce niching via a sharing function [Goldberg, 1989]. The heuris-

tic is to reduce the fitness of chromosomes which are similar. The clique

domain presents problems in determining both genotypical and phenotypi-

cal similarities.

Extending the benchmark graphs: The 49 benchmark graphs presented in

Chapter 6 were carefully designed such that the cliques were disjoint and



124

both the number of cliques and the cardinality of each clique were known be-

forehand. Some additional research could be performed by carefully remov-

ing the disjointness property and controlling the number and distribution of

edges shared between cliques. Also, it would be beneficial to categorize the

DIMACS graphs with respect to my benchmark graphs.



BIBLIOGRAPHY

[Alberts et al., 1989] Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff,
Keith Roberts, and James D. Watson. Molecular Biology of the Cell. Gar-
land Publishing, Inc., 1989.

[Altenberg, 1994] Lee Altenberg. The evolution of evolvability in genetic program-
ming. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming,
chapter 3, pages 47–74. MIT Press, 1994.

[Andre and Teller, 1996] David Andre and Astro Teller. A study in program re-
sponse and the negative effects of introns in genetic programming. In John R.
Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic
Programming 1996: Proceedings of the First Annual Conference, pages 12–20,
Stanford University, CA, USA, 28–31 July 1996. MIT Press.

[Andre, 1995] David Andre. The evolution of agents that build mental models and
create simple plans using genetic programming. In L. Eshelman, editor, Genetic
Algorithms: Proceedings of the Sixth International Conference (ICGA95), pages
248–255, Pittsburgh, PA, USA, 15-19 July 1995. Morgan Kaufmann.

[Angeline and Kinnear, Jr., 1996] Peter J. Angeline and Kenneth E. Kinnear, Jr.,
editors. Advances in Genetic Programming 2. MIT Press, Cambridge, MA,
1996.

[Angeline, 1994] Peter J. Angeline. Genetic programming and emergent intelli-
gence. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Programming,
pages 75–97. MIT Press, Cambridge, MA, 1994.

[Angeline, 1996] Peter J. Angeline. Two self-adaptive crossover operators for ge-
netic programming. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Ad-
vances in Genetic Programming 2, chapter 5, pages 89–110. MIT Press, Cam-
bridge, MA, USA, 1996.

[Angeline, 1997] Peter J. Angeline. Subtree crossover: Building block engine or
macromutation? In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B.
Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Program-
ming 1997: Proceedings of the Second Annual Conference, pages 9–17, Stanford
University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[Bui and Eppley, 1995] Thang Nguyen Bui and Paul H. Eppley. A hybrid genetic
algorithm for the maximum clique problem. In Larry Eshelman, editor, Pro-
ceedings of the Sixth International Conference on Genetic Algorithms, pages
478–484, San Francisco, CA, 1995. Morgan Kaufmann.

125



126

[Cobb, 1993] Helen Cobb. Is the genetic algorithm a cooperative learner? In
L. Darrell Whitley, editor, Foundations of Genetic Algorithms 2, pages 277–
296. Morgan Kaufmann Publishers, Inc., 1993.

[Corkill et al., 1986] Daniel D. Corkill, Kevin Q. Gallagher, and Kelly E. Murray.
GBB: A generic blackboard development system. In Proceedings of the Fifth
National Conference on Artificial Intelligence, pages 1008–1014, Philadelphia,
PA, August 1986. (Also published in Blackboard Systems, Robert S. Engelmore
and Anthony Morgan, editors, pages 503–518, Addison-Wesley, 1988.).

[Corkill, 1989] Daniel D. Corkill. Design alternatives for parallel and dis-
tributed blackboard systems. In V. Jagannathan, Rajendra Dodhiawala, and
Lawrence S. Baum, editors, Blackboard Architectures and Applications, pages
99–136. Academic Press, 1989. (Presented at the Second Workshop on Black-
board Systems, AAAI-88, St. Paul, Minnesota, August 24, 1988.).

[Davidor, 1991] Yuval Davidor. Epistasis variance: A viewpoint on GA-hardness.
In Gregory J. E. Rawlins, editor, Foundations of Genetic Algorithms. Morgan
Kaufmann Publishers, 1991.

[Davis et al., 1993] Lawrence Davis, David Orvosh, Anthony Cox, and Yuping
Qiu. A genetic algorithm for survivable network design. In Stephanie Forrest,
editor, Proceedings of the Fifth International Conference on Genetic Algorithms,
pages 408–415, San Mateo, CA, 1993. Morgan Kaufman.

[Davis, 1991] Lawrence Davis. Handbook of Genetic Algorithms. Van Nostrand
Reinhold, New York, NY, 1991.

[de Souza and Talukdar, 1991] Pedro Sergio de Souza and Sarosh N. Talukdar.
Genetic algorithms in asynchronous teams. In Rick Belew and Lashon Booker,
editors, Proceedings of the Fourth International Conference on Genetic Algo-
rithms, pages 392–397, San Mateo, CA, 1991. Morgan Kaufman.

[Decker et al., 1993] Keith S. Decker, Alan J. Garvey, Marty A. Humphrey, and
Victor R. Lesser. Control heuristics for scheduling in a parallel blackboard
system. International Journal of Pattern Recognition and Artificial Intelligence,
7(2):243–264, 1993.

[Falkenauer, 1995] Emanuel Falkenauer. Solving equal piles with the grouping
genetic algorithm. In Larry Eshelman, editor, Proceedings of the Sixth Interna-
tional Conference on Genetic Algorithms, pages 492–497, San Francisco, CA,
1995. Morgan Kaufmann.

[Fennell and Lesser, 1977] Richard D. Fennell and Victor R. Lesser. Parallelism
in Artificial Intelligence problem solving: A case study of Hearsay II. IEEE
Transactions on Computers, C-26(2):98–111, February 1977. (Also published
in Readings in Distributed Artificial Intelligence, Alan H. Bond and Les Gasser,
editors, pages 106-119, Morgan Kaufmann, 1988.).



127

[Futuyma, 1986] Douglas J. Futuyma. Evolutionary Biology. Sinauer Associate,
Sunderland, MA, 1986.

[Garey and Johnson, 1979] Michael R. Garey and David S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman
and Co., San Francisco, CA, 1979.

[Garland and Alterman, 1995] Andrew Garland and Richard Alterman. Prepara-
tion of multi-agent knowledge for reuse. In David W. Aha and Ashwin Ram,
editors, Working Notes for the AAAI Symposium on Adaptation of Knowldege
for Reuse, Cambridge, MA, November 1995. AAAI.

[Garland and Alterman, 1996] Andrew Garland and Richard Alterman. Multia-
gent learning through collective memory. In Sandip Sen, editor, Working Notes
for the AAAI Symposium on Adaptation, Co-evolution and Learning in Multi-
agent Systems, pages 33–38, Stanford University, CA, March 1996.

[Goldberg, 1989] David E. Goldberg. Genetic Algorithms in Search, Optimization
& Machine Learning. Addison-Wesley, Reading, MA, 1989.

[Goldberg, 1994] David E. Goldberg. Genetic and evolutionary algorithms come
of age. Communications of the ACM, 37(3):113–119, March 1994.

[Guha and Lenat, 1990] R. V. Guha and Douglas B. Lenat. Cyc: A midterm
report. AI Magazine, 11(3):33–59, Fall 1990.

[Halpern and Moses, 1990] Joseph Halpern and Yoram Moses. Knowledge and
common knowledge in a distributed environment. Journal of the ACM,
37(3):549–587, 1990. A preliminary version appeared in Proc. 3rd ACM Sym-
posium on Principles of Distributed Computing, 1984.

[Hart and Belew, 1996] William E. Hart and Richard K. Belew. Optimization
with genetic algorithm hybrids that use local search. In Richard K. Belew
and Melanie Mitchell, editors, Adaptive Individuals in Evolving Populations:
Models and Algorithms, pages 483–496. Addison-Wesley, 1996. (SFI Studies in
the Sciences of Complexity Vol. 26).

[Hart, 1994] William E. Hart. Adaptive Global Optimization with Local Search.
PhD thesis, University of California, San Diego, May 1994.

[Haynes and Sen, 1997] Thomas Haynes and Sandip Sen. Crossover operators for
evolving a team. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fo-
gel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming
1997: Proceedings of the Second Annual Conference. MIT Press, 1997.

[Haynes and Wainwright, 1995] Thomas D. Haynes and Roger L. Wainwright. A
simulation of adaptive agents in a hostile environment. In K. M. George, Jan-
ice H. Carroll, Ed Deaton, Dave Oppenheim, and Jim Hightower, editors, Pro-



128

ceedings of the 1995 ACM Symposium on Applied Computing, pages 318–323.
ACM Press, 1995.

[Haynes et al., 1995a] Thomas Haynes, Sandip Sen, Dale Schoenefeld, and Roger
Wainwright. Evolving a team. In E. V. Siegel and J. R. Koza, editors, Working
Notes for the AAAI Symposium on Genetic Programming, Cambridge, MA,
November 1995. AAAI.

[Haynes et al., 1995b] Thomas Haynes, Roger Wainwright, Sandip Sen, and Dale
Schoenefeld. Strongly typed genetic programming in evolving cooperation
strategies. In Larry Eshelman, editor, Proceedings of the Sixth International
Conference on Genetic Algorithms, pages 271–278, San Francisco, CA, 1995.
Morgan Kaufmann Publishers, Inc.

[Haynes et al., 1996a] Thomas Haynes, Rose Gamble, Leslie Knight, and Roger
Wainwright. Entailment for specification refinement. In John R. Koza, David E.
Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Programming
1996: Proceedings of the First Annual Conference, pages 90–97, Cambridge,
MA, 1996. The MIT Press.

[Haynes et al., 1996b] Thomas Haynes, Dale Schoenefeld, and Roger Wainwright.
Type inheritance in strongly typed genetic programming. In Kenneth E. Kin-
near, Jr. and Peter J. Angeline, editors, Advances in Genetic Programming 2,
chapter 18. MIT Press, 1996.

[Haynes, 1994] Thomas D. Haynes. A simulation of adaptive agents in a hostile
environment. Master’s thesis, University of Tulsa, Tulsa, OK., April 1994.

[Haynes, 1996] Thomas Haynes. Duplication of coding segments in genetic pro-
gramming. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence, Portland, OR, August 1996.

[Haynes, 1997a] Thomas Haynes. Augmenting collective adaptation with a simple
process agent. In Sandip Sen, editor, AAAI Workshop on Multiagent Learning.
1997.

[Haynes, 1997b] Thomas Haynes. Collective memory search. In Proceedings of
the 1997 ACM Symposium on Applied Computing. ACM Press, 1997.

[Haynes, 1997c] Thomas Haynes. On–line adaptation of search via knowledge
reuse. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max
Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997:
Proceedings of the Second Annual Conference, pages 156–161, 1997.

[Haynes, 1997d] Thomas Haynes. Phenotypical building blocks for genetic pro-
gramming. In Thomas Bäck, editor, Proceedings of the Seventh International
Conference on Genetic Algorithms (ICGA97), San Francisco, CA, 1997. Morgan
Kaufmann.



129

[Hogg and Williams, 1993] Tad Hogg and Colin P. Williams. Solving the really
hard problems with cooperative search. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, pages 231–236, Menlo Park, CA, 1993.
AAAI Press.

[Hogg and Williams, 1994] Tad Hogg and Colin P. Williams. Expected gains from
parallelizing constraint solving for hard problems. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, pages 331–336, Menlo Park, CA,
1994. AAAI Press.

[Holland, 1975] John H. Holland. Adpatation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, MI, 1975.

[Holland, 1986] John H. Holland. Escaping brittleness: the possibilities of general-
purpose learning algorithms applied to parallel rule-based systems. In R. S.
Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning, an
artificial intelligence approach: Volume II. Morgan Kaufmann, Los Alamos,
CA, 1986.

[Hwang and Briggs, 1985] Kai Hwang and Faye A. Briggs. Computer Architecture
and Parallel Processing. McGraw-Hill International, 1985.

[Johnson and Trick, 1996] David S. Johnson and Michael A. Trick, editors.
Cliques, Coloring, and Satisfiability, volume 26 of DIMACS: Series in Dis-
crete Mathematics and Theoretical Computer Science. American Mathematical
Society, 1996.

[Jones and Forrest, 1995] Terry Jones and Stephanie Forrest. Fitness distance
correlation as a measure of problem difficulty for genetic algorithms. In Larry
Eshelman, editor, Proceedings of the Sixth International Conference on Genetic
Algorithms, pages 184–192, San Francisco, CA, 1995. Morgan Kaufmann.

[Kinnear, Jr., 1994a] Kenneth E. Kinnear, Jr., editor. Advances in Genetic Pro-
gramming. MIT Press, Cambridge, MA, 1994.

[Kinnear, Jr., 1994b] Kenneth E. Kinnear, Jr. Alternatives in automatic function
definition: A comparision of performance. In Kenneth E. Kinnear, Jr., editor,
Advances in Genetic Programming, pages 119–141. MIT Press, Cambridge, MA,
1994.

[Koza, 1992] John R. Koza. Genetic Programming: On the Programming of Com-
puters by Natural Selection. MIT Press, Cambridge, MA, 1992.

[Koza, 1994] John R. Koza. Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press, Cambridge, MA, May 1994.

[Levenick, 1991] James R. Levenick. Inserting introns improves genetic algorithm
success rate: Taking a cue from biology. In Rick Belew and Lashon Booker,



130

editors, Proceedings of the Fourth International Conference on Genetic Algo-
rithms, pages 123–127, San Mateo, CA, 1991. Morgan Kaufman.

[Mitchell et al., 1992] Melanie Mitchell, Stephanie Forrest, and John H. Holland.
The royal road for genetic algorithms: Fitness landscapes and GA performance.
In Toward a Practice of Autonomous Systems: Proceedings of the First Euro-
pean Conference on Artificial Life, pages 245–254, Cambridge, MA, 1992. MIT
Press.

[Montana, 1995] David J. Montana. Strongly typed genetic programming. Evo-
lutionary Computation, 3(2):199–230, 1995.

[Nii, 1986] H. Penny Nii. Blackboard systems: The blackboard model of problem
solving and the evolution of blackboard architectures. AI Magazine, 7(2):38–53,
Summer 1986.

[Nordin, 1994] Peter Nordin. A compiling genetic programming system that di-
rectly manipulates the machine code. In Kenneth E. Kinnear, Jr., editor, Ad-
vances in Genetic Programming. MIT Press, 1994.

[Nordin, 1996] Peter Nordin. Explictly defined introns and destructive crossover
in genetic programming. In P. Angeline and K. E. Kinnear, Jr., editors, Ad-
vances in Genetic Programming 2. MIT Press, 1996.

[O’Reilly and Oppacher, 1994] Una-May O’Reilly and Franz Oppacher. Program
search with a hierarchical variable length representation: Genetic program-
ming, simulated annealing and hill climbing. In Yuval Davidor, Hans-Paul
Schwefel, and Reinhard Manner, editors, Parallel Problem Solving from Nature
– PPSN III, number 866 in Lecture Notes in Computer Science, pages 397–406,
Jerusalem, 9-14 October 1994. Springer-Verlag.

[O’Reilly and Oppacher, 1995a] Una-May O’Reilly and Franz Oppacher. Hy-
bridized crossover-based search techniques for program discovery. In Proceedings
of the 1995 World Conference on Evolutionary Computation, volume 2, page
573, Perth, Australia, 29 November - 1 December 1995.

[O’Reilly and Oppacher, 1995b] Una-May O’Reilly and Franz Oppacher. The
troubling aspects of a building block hypothesis for genetic programming. In
L. Darrell Whitley and Michael D. Vose, editors, Foundations of Genetic Al-
gorithms 3, pages 73–88, Estes Park, Colorado, USA, 31 July–2 August 1994
1995. Morgan Kaufmann.

[O’Reilly, 1995] Una-May O’Reilly. An Analysis of Genetic Programming. PhD
thesis, Carelton University, Ottawa, Ontario, Canada, 22 September 1995.

[Orvosh and Davis, 1993] David Orvosh and Lawrence Davis. Shall we repair?
Genetic algorithms, combinatorial optimization, and feasibility constraints. In
Stephanie Forrest, editor, Proceedings of the Fifth International Conference on
Genetic Algorithms, page 650, San Mateo, CA, 1993. Morgan Kaufman.



131

[Poli and Langdon, 1997a] Riccardo Poli and W. B. Langdon. An experimental
analysis of schema creation, propagation and disruption in genetic program-
ming. In Thomas Bäck, editor, Proceedings of the Seventh International Con-
ference on Genetic Algorithms (ICGA97), San Francisco, CA, 1997. Morgan
Kaufmann.

[Poli and Langdon, 1997b] Riccardo Poli and W. B. Langdon. A new schema
theory for genetic programming with one-point crossover and point mutation.
In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon,
Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings
of the Second Annual Conference, pages 278–285, Stanford University, CA,
USA, 13-16 July 1997. Morgan Kaufmann.

[Punch et al., 1996] William F. Punch, Douglas Zongker, and Erik D. Goodman.
The royal tree problem, a benchmark for single and multiple population genetic
programming. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances
in Genetic Programming 2, chapter 15, pages 299–316. MIT Press, Cambridge,
MA, USA, 1996.

[Rosca and Ballard, 1996] Justinian P. Rosca and Dana H. Ballard. Discovery of
subroutines in genetic programming. In Peter J. Angeline and K. E. Kinnear,
Jr., editors, Advances in Genetic Programming 2, chapter 9, pages 177–202.
MIT Press, Cambridge, MA, USA, 1996.

[Rosca, 1997] Justinian P. Rosca. Analysis of complexity drift in genetic pro-
gramming. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel,
Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming
1997: Proceedings of the Second Annual Conference, pages 286–294, Stanford
University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[Russell and Norvig, 1995] Stuart Russell and Peter Norvig. Artificial Intelli-
gence: A Modern Approach. Prentice Hall, 1995.

[Seront, 1995] Gregory Seront. External concepts reuse in genetic programming.
In E. V. Siegel and J. R. Koza, editors, Working Notes for the AAAI Symposium
on Genetic Programming, pages 94–98, MIT, Cambridge, MA, USA, 10–12
November 1995. AAAI.

[Soule and Foster, 1997] Terence Soule and James A. Foster. Genetic algorithm
hardness measures applied to the maximum clique problem. In Thomas Bäck,
editor, Proceedings of the Seventh International Conference on Genetic Algo-
rithms (ICGA97), San Francisco, CA, 1997. Morgan Kaufmann.

[Soule et al., 1996] Terence Soule, James A. Foster, and John Dickinson. Us-
ing genetic programming to approximate maximum clique. In John R. Koza,
David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Pro-
gramming 1996: Proceedings of the First Conference, Stanford University, CA,
USA, 28–31 July 1996. MIT Press.



[Spector, 1996] Lee Spector. Simultaneous evolution of programs and their control
structures. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in
Genetic Programming 2, chapter 7, pages 137–154. MIT Press, Cambridge, MA,
USA, 1996.

[Tackett and Carmi, 1994] Walter Alden Tackett and Aviram Carmi. The donut
problem: Scalability and generalization in genetic programming. In Kenneth E.
Kinnear, Jr., editor, Advances in Genetic Programming, chapter 7, pages 143–
176. MIT Press, 1994.

[Tackett, 1993] Walter Alden Tackett. Genetic programming for feature discov-
ery and image discrimination. In Stephanie Forrest, editor, Proceedings of the
5th International Conference on Genetic Algorithms, ICGA-93, pages 303–309,
University of Illinois at Urbana-Champaign, 17-21 July 1993. Morgan Kauf-
mann.

[Tackett, 1995] Walter A. Tackett. Mining the genetic program. IEEE Expert,
12(3):28–38, 1995.

[Talukdar et al., 1983] S .N. Talukdar, S. S. Pyo, and T. Giras. Asynchronous
procedures for parallel processing. IEEE Transactions on PAS, PAS–102(11),
November 1983.

[Tanenbaum, 1987] A. Tanenbaum. Operating Systems: Design and Implementa-
tion. Prentice Hall, Engelwood Cliffs, NJ, 1987.

[Wu and Lindsay, 1995] Annie S. Wu and Robert K. Lindsay. Empirical studies
of the genetic algorithm with non-coding segments. Evolutionary Computation,
3(2), 1995.

132



APPENDIX A

Data for Base Heuristics

1 2 4 8 16 32 64

1 RS 1 2 4 8 13 20 28
HC 1 2 4 8 15 22 41
SA 1 2 4 8 15 22 42
GA 1 2 4 7.3 12 17 26
GP 1 2 4 5.9 8.1 9.1 9.8

2 RS 1 2 4 6.4 7.9 9.8 11
HC 1 2 4 8 14 19 29
SA 1 2 4 8 13 20 28
GA 1 2 3.9 5.7 6.8 8.3 8.7
GP 1 2 3.5 4.8 5.6 5.5 5.6

4 RS 1 2 3.8 4.7 5.3 6 6
HC 1 2 4 7.3 11 13 18
SA 1 2 4 7.3 11 14 18
GA 1 2 3.4 4 4.2 4.7 4.7
GP 1 2 3.3 3.9 4.2 4 4

8 RS 1 2 3.1 3.8 4.2 4 4.4
HC 1 2 4 6.4 7.7 9.3 10
SA 1 2 4 6.1 8 8.8 9.7
GA 1 2 3 3.1 3 3.5 3.6
GP 1 2 2.8 3.5 3.8 3.1 3.2

16 RS 1 2 2.9 3.2 3 3.1 3.3
HC 1 2 3.7 5 5.5 6 6.7
SA 1 2 3.6 4.8 3.3 5.8 6.1
GA 1 2 2.2 2.4 2.5 2.8 3
GP 1 2 2.4 3.2 2.9 2.6 2.9

32 RS 1 2 2.3 2.6 2.8 2.6 2.7
HC 1 2 3.3 3.7 4 4.8 4.4
SA 1 2 3.3 3.9 3.8 4.5 4.3
GA 1 1.8 2 2 2.1 2.4 2.3
GP 1 2 2.1 2.4 2.5 2.5 2.5

64 RS 1 2 2 2.2 2.3 2.1 2.3
HC 1 2 3 3 3.3 3.4 3.4
SA 1 2 2.5 2.8 2.9 3.2 3.4
GA 1 1.3 1.9 2 2 1.9 1.9
GP 1 2 1.8 2.2 2 2.3 2.1

Table A.1: For comparing the different base versions of the heuristics
the average maximal Generational Max Clique of Generation.

133



134

1 2 4 8 16 32 64

1 RS 1 1 1 0.96 0.0014 1.2E-13 3.5E-54
HC 1 1 1 1 0.48 5.8E-08 1.7E-21
SA 1 1 1 1 0.4 2.3E-10 1.7E-21
GA 1 1 1 0.53 7.1E-05 1E-17 5.4E-48
GP 1 1 1 0.033 3E-08 2.1E-28 4.4E-82

2 RS 1 1 0.67 0.033 6.1E-09 1E-28 2E-80
HC 1 1 1 0.97 0.035 3.4E-16 2.1E-51
SA 1 1 1 0.9 0.0053 2.9E-08 7.3E-50
GA 1 1 0.9 0.017 6.6E-10 8.1E-30 2E-83
GP 1 0.93 0.42 0.002 4.6E-10 5.3E-33 6E-87

4 RS 1 0.71 0.24 0.00073 4.9E-12 4.7E-33 3.3E-87
HC 1 1 1 0.16 6.1E-05 1.8E-23 4E-65
SA 1 1 0.99 0.19 0.00084 5.3E-17 8.7E-61
GA 1 0.99 0.35 0.00043 1.5E-12 2.9E-34 8.2E-88
GP 1 0.4 0.15 0.00025 8.2E-13 6.9E-35 1.4E-88

8 RS 0.86 0.29 0.058 9.3E-05 4.8E-13 2E-35 3.5E-88
HC 1 1 0.71 0.016 1.5E-07 2.1E-27 3.2E-76
SA 1 0.99 0.62 0.0086 1.5E-07 1.4E-29 6.5E-80
GA 1 0.68 0.11 8.5E-05 1.7E-13 3.6E-35 5E-89
GP 1 0.17 0.043 7.9E-05 2.7E-13 5.3E-36 1.5E-89

16 RS 0.53 0.12 0.019 1.7E-05 2.4E-14 2.4E-36 5.8E-90
HC 1 0.91 0.26 0.0011 6.6E-13 6E-34 1.2E-83
SA 1 0.66 0.2 0.00046 4.8E-14 9.5E-34 3.7E-87
GA 0.99 0.26 0.036 2.5E-05 5.2E-14 5.9E-36 1.1E-89
GP 1 0.069 0.013 2.7E-05 4.1E-14 1.2E-36 3.9E-90

32 RS 0.27 0.045 0.0059 4.7E-06 8.4E-15 6.9E-37 1.4E-90
HC 1 0.42 0.075 7.2E-05 1.2E-13 6.8E-35 4.4E-89
SA 0.83 0.22 0.055 8.8E-05 1.6E-13 2.8E-35 1E-88
GA 0.74 0.078 0.0098 7.5E-06 1.5E-14 1.9E-36 2.9E-90
GP 1 0.034 0.0039 4.7E-06 9.1E-15 4.9E-37 1.2E-90

64 RS 0.14 0.018 0.0019 1.2E-06 2.8E-15 2.2E-37 4.6E-91
HC 1 0.14 0.022 1.5E-05 3.2E-14 3.5E-36 7.8E-90
SA 0.59 0.069 0.01 8.4E-06 1.9E-14 3.7E-36 5.5E-90
GA 0.46 0.019 0.0025 2E-06 4E-15 4.1E-37 7.4E-91
GP 1 0.016 0.0012 1.4E-06 1.7E-15 1.8E-37 3.3E-91

Table A.2: For comparing the different base versions of the heuristics
the average maximal Max Clique Cover of Generation.



135

1 2 4 8 16 32 64

1 RS 21.75 21.30 21.20 21.65 22.95 25.35 29.95
HC 21.75 21.45 21.45 22.05 35.55 26.75 47.45
SA 21.65 21.30 21.15 21.85 34.60 85.30 80.05
GA 55.70 51.70 104.30 83.00 62.50 35.50 59.25
GP 344.45 241.80 236.95 246.30 362.15 332.30 188.20

2 RS 21.05 20.70 20.90 21.00 21.20 21.30 21.75
HC 21.55 34.70 69.20 23.60 35.55 81.65 33.40
SA 21.45 21.25 82.90 41.90 36.75 78.85 34.30
GA 53.35 36.85 26.50 28.30 47.70 29.40 31.20
GP 270.40 238.55 171.20 190.50 218.30 212.20 199.95

4 RS 21.00 20.55 20.70 20.65 20.50 21.00 20.95
HC 65.25 43.80 23.00 31.40 40.10 42.35 44.80
SA 85.30 87.45 68.60 30.90 38.55 41.65 42.65
GA 26.05 27.10 27.10 28.25 61.50 29.15 30.45
GP 252.65 131.00 138.65 155.65 213.15 227.80 177.60

8 RS 21.00 20.50 20.60 20.45 20.50 20.80 20.90
HC 22.25 22.85 27.25 34.75 38.75 80.80 88.65
SA 21.70 22.05 25.90 31.85 36.35 75.40 82.85
GA 27.10 26.65 28.15 38.30 61.60 30.65 32.20
GP 244.30 128.95 189.35 234.90 189.60 180.75 128.10

16 RS 20.80 20.65 20.50 20.45 20.60 20.65 23.00
HC 25.15 24.65 27.85 31.30 79.80 34.20 36.20
SA 23.35 22.45 25.70 27.40 28.95 30.70 33.75
GA 30.65 26.50 30.40 28.75 58.95 31.35 34.25
GP 308.75 116.50 152.80 114.60 171.75 148.85 191.55

32 RS 20.95 20.20 38.05 20.45 20.50 20.65 20.65
HC 35.30 23.30 25.15 26.80 28.80 57.35 58.40
SA 26.30 21.30 30.60 25.35 24.40 50.40 53.30
GA 35.05 26.20 27.25 28.45 63.15 32.65 39.15
GP 526.45 128.15 151.40 141.15 100.25 179.95 140.35

64 RS 20.95 23.80 20.35 20.50 20.50 20.85 20.55
HC 67.40 22.15 23.15 23.45 23.75 24.35 24.95
SA 30.80 21.20 21.45 21.90 22.25 22.65 23.55
GA 39.55 26.10 27.50 28.95 31.85 37.80 48.50
GP 780.20 125.00 151.95 114.65 117.50 121.40 129.25

Table A.3: For comparing the different base versions of the heuristics
Sum of Time Differences per Generation.



APPENDIX B

Data for Duplication of Coding Segments Heuristics

1 2 4 8 16 32 64

1 RRS 1 2 4 8 14 20 27
RSA 1 2 4 8 13 21 31
RHC 1 2 4 8 14 22 33
RGA 1 2 4 8 16 28 35
RGP 1 2 4 5.6 7.9 8.4 9.1

2 RRS 1 2 4 7.8 12 16 20
RSA 1 2 4 7.7 13 20 30
RHC 1 2 4 7.5 13 20 32
RGA 1 2 4 8 15 22 26
RGP 1 2 3.9 5 5.3 4.8 5.3

4 RRS 1 2 4 7.6 10 12 14
RSA 1 2 4 7.3 12 20 28
RHC 1 2 4 6.8 12 18 27
RGA 1 2 4 7.5 11 14 16
RGP 1 2 3.4 3.9 4.2 4.1 4.2

8 RRS 1 2 3.9 6.8 9.6 10 11
RSA 1 2 4 6.8 12 17 25
RHC 1 2 4 6.5 12 17 23
RGA 1 2 3.5 6 6.7 8.3 8.3
RGP 1 2 3 3.3 3.4 3.3 3.3

16 RRS 1 2 3.7 6.3 8.3 9.2 10
RSA 1 2 3.6 6.7 11 16 23
RHC 1 2 3.5 6.3 11 16 20
RGA 1 2 2.6 3.1 4.8 4.7 5.3
RGP 1 2 2.5 2.9 2.9 2.8 2.8

32 RRS 1 2 3.3 6.2 8 8.9 9.3
RSA 1 2 3.4 5.8 9.9 14 17
RHC 1 2 3.3 5.7 9.8 14 18
RGA 1 1.8 2.4 2.8 2.8 3 2.5
RGP 1 2 2.3 2.4 2.2 2.4 2.4

64 RRS 1 2 3.4 6 7 7.8 7.8
RSA 1 2 3 5.6 9.3 12 14
RHC 1 2 3.1 5.6 8.7 12 15
RGA 1 1.3 2 2.3 2.6 2 2.1
RGP 1 2 2 2.1 2.1 2.1 2.2

Table B.1: For comparing repair on the heuristics the average maximal
Generational Max Clique of Generation.

136



137

1 2 4 8 16 32 64

1 RRS 1 1 1 1 0.0035 4.9E-16 2.2E-58
RSA 1 1 1 1 0.056 1.2E-14 8E-45
RHC 1 1 1 1 0.11 6.7E-12 3.3E-43
RGA 1 1 1 1 1 0.00021 1.1E-39
RGP 1 1 1 0.041 5.8E-09 9.4E-30 1.5E-80

2 RRS 1 1 1 0.5 6E-05 1.2E-20 1.3E-67
RSA 1 1 1 0.8 0.0042 1E-14 8.1E-50
RHC 1 1 1 0.83 0.0044 6.4E-14 1.4E-47
RGA 1 1 1 0.95 0.23 4.2E-11 5.2E-56
RGP 1 0.97 0.9 0.013 3.4E-11 8.9E-34 1.8E-86

4 RRS 1 1 0.79 0.19 5E-06 1.3E-25 1.4E-76
RSA 1 1 1 0.41 0.00026 5.9E-14 3.7E-50
RHC 1 1 1 0.22 0.0017 1.3E-15 1.4E-48
RGA 1 0.99 0.87 0.19 2.5E-05 1.2E-19 1.2E-70
RGP 1 0.7 0.46 0.0021 6.3E-12 2.1E-34 5.9E-88

8 RRS 1 0.99 0.32 0.04 4.7E-08 2.2E-27 5.3E-81
RSA 1 1 0.85 0.11 0.0014 1.7E-18 5.3E-56
RHC 1 1 0.89 0.057 3.1E-05 1.4E-18 1.3E-54
RGA 1 0.7 0.31 0.014 4.3E-10 2.7E-29 6.4E-80
RGP 1 0.23 0.13 0.00039 1.6E-12 5.3E-35 1.2E-88

16 RRS 1 0.58 0.13 0.011 1.3E-08 1E-27 7.7E-83
RSA 1 0.9 0.43 0.034 8.9E-05 2.1E-21 1.8E-50
RHC 1 0.92 0.39 0.027 2.1E-05 1.4E-18 1.8E-68
RGA 1 0.23 0.059 0.0005 7.4E-11 5E-33 9E-86
RGP 1 0.091 0.043 0.00011 3.4E-13 1.1E-35 2.3E-89

32 RRS 1 0.25 0.05 0.0059 6.4E-09 6.2E-31 2.2E-81
RSA 1 0.42 0.14 0.0069 5.5E-07 5.2E-23 1.9E-67
RHC 1 0.47 0.17 0.0072 3.8E-07 4.7E-22 4.9E-72
RGA 0.95 0.073 0.015 0.00021 9.5E-14 3.1E-36 2.1E-89
RGP 1 0.039 0.015 1.8E-05 3.5E-14 3.1E-36 6.7E-90

64 RRS 0.93 0.096 0.02 0.0017 2.7E-11 6.2E-33 5E-85
RSA 1 0.12 0.047 0.0021 2.5E-08 3.2E-27 1.5E-74
RHC 1 0.15 0.051 0.0028 3.3E-06 2.1E-26 3.5E-74
RGA 0.73 0.018 0.0034 5.1E-06 1E-14 4.9E-37 1.6E-90
RGP 1 0.017 0.0046 4.4E-06 8.3E-15 8.3E-37 1.5E-90

Table B.2: For comparing repair on the heuristics the average maximal
Max Clique Cover of Generation.



138

1 2 4 8 16 32 64

1 RRS 22.55 22.15 22.20 29.05 41.45 93.65 103.50
RS 21.75 21.30 21.20 21.65 22.95 25.35 29.95

RHC 14.80 21.65 30.50 37.60 33.70 56.70 28.90
HC 21.75 21.45 21.45 22.05 35.55 26.75 47.45

RSA 22.70 22.10 22.15 24.95 46.50 78.05 93.90
SA 21.65 21.30 21.15 21.85 34.60 85.30 80.05

RGA 54.95 53.65 54.35 57.30 71.05 113.30 147.45
GA 55.70 51.70 104.30 83.00 62.50 35.50 59.25

RGP 81.55 87.10 156.15 483.30 451.30 476.90 498.10
GP 344.45 241.80 236.95 246.30 362.15 332.30 188.20

2 RRS 23.50 22.75 23.35 31.00 38.30 42.75 93.00
RS 21.05 20.70 20.90 21.00 21.20 21.30 21.75

RHC 16.00 19.50 16.15 31.60 94.90 69.70 55.55
HC 21.55 34.70 69.20 23.60 35.55 81.65 33.40

RSA 23.65 22.90 23.10 37.65 47.00 89.40 87.10
SA 21.45 21.25 82.90 41.90 36.75 78.85 34.30

RGA 57.00 55.60 56.20 59.80 87.65 105.15 119.45
GA 53.35 36.85 26.50 28.30 47.70 29.40 31.20

RGP 77.55 93.20 213.80 436.85 491.45 574.20 552.75
GP 270.40 238.55 171.20 190.50 218.30 212.20 199.95

4 RRS 24.90 24.00 30.35 34.10 38.10 40.75 44.75
RS 21.00 20.55 20.70 20.65 20.50 21.00 20.95

RHC 14.70 14.40 16.05 33.30 31.15 31.05 34.35
HC 65.25 43.80 23.00 31.40 40.10 42.35 44.80

RSA 25.00 24.05 26.20 44.65 48.55 43.95 41.80
SA 85.30 87.45 68.60 30.90 38.55 41.65 42.65

RGA 61.00 60.20 59.55 64.05 77.55 84.45 96.80
GA 26.05 27.10 27.10 28.25 61.50 29.15 30.45

RGP 86.15 90.95 257.05 439.85 423.80 479.40 471.90
GP 252.65 131.00 138.65 155.65 213.15 227.80 177.60

8 RRS 35.00 30.75 38.65 41.05 43.40 37.80 39.70
RS 21.00 20.50 20.60 20.45 20.50 20.80 20.90

RHC 17.65 16.45 29.25 37.50 37.60 54.85 54.15
HC 22.25 22.85 27.25 34.75 38.75 80.80 88.65

RSA 29.10 26.10 41.20 47.65 48.15 91.55 87.50
SA 21.70 22.05 25.90 31.85 36.35 75.40 82.85

RGA 68.15 61.60 64.95 62.65 73.90 74.85 74.60
GA 27.10 26.65 28.15 38.30 61.60 30.65 32.20

RGP 63.90 85.70 175.30 342.90 440.05 390.50 229.55
GP 244.30 128.95 189.35 234.90 189.60 180.75 128.10

16 RRS 35.00 25.15 28.65 50.65 32.15 33.75 35.50
RS 20.80 20.65 20.50 20.45 20.60 20.65 23.00

RHC 26.65 19.30 33.75 41.50 37.85 30.50 32.55
HC 25.15 24.65 27.85 31.30 79.80 34.20 36.20

RSA 35.00 27.95 51.75 55.80 47.15 44.30 43.15
SA 23.35 22.45 25.70 27.40 28.95 30.70 33.75

RGA 84.30 58.75 65.55 70.00 69.30 76.45 76.25
GA 30.65 26.50 30.40 28.75 58.95 31.35 34.25

RGP 232.20 85.05 129.95 225.65 269.40 281.20 300.15
GP 308.75 116.50 152.80 114.60 171.75 148.85 191.55

32 RRS 49.25 24.30 28.00 31.25 31.20 30.20 32.40
RS 20.95 20.20 38.05 20.45 20.50 20.65 20.65

RHC 32.75 19.95 35.15 36.25 35.45 27.80 30.55
HC 35.30 23.30 25.15 26.80 28.80 57.35 58.40

RSA 50.55 26.10 41.20 46.90 46.55 89.75 90.70
SA 26.30 21.30 30.60 25.35 24.40 50.40 53.30

RGA 115.35 56.45 61.30 63.90 68.15 74.40 87.55
GA 35.05 26.20 27.25 28.45 63.15 32.65 39.15

RGP 495.80 82.50 140.45 138.95 173.15 191.60 197.75
Continued on next page



139

1 2 4 8 16 32 64
GP 526.45 128.15 151.40 141.15 100.25 179.95 140.35

64 RRS 69.55 23.35 26.00 26.45 27.55 27.90 29.55
RS 20.95 23.80 20.35 20.50 20.50 20.85 20.55

RHC 58.10 15.40 22.25 25.15 28.25 31.15 32.60
HC 67.40 22.15 23.15 23.45 23.75 24.35 24.95

RSA 87.75 23.65 32.75 37.30 42.15 43.65 45.25
SA 30.80 21.20 21.45 21.90 22.25 22.65 23.55

RGA 155.30 54.45 58.60 62.80 68.25 80.65 101.75
GA 39.55 26.10 27.50 28.95 31.85 37.80 48.50

RGP 913.30 90.95 131.10 113.00 120.20 147.05 110.35
GP 780.20 125.00 151.95 114.65 117.50 121.40 129.25

Table B.3: For comparing repair on the heuristics Sum of Time Differ-
ences per Generation.



APPENDIX C

Data for Varying the Repair Rate for GA

1 2 4 8 16 32 64

1 R0 1 2 4 7.3 12 17 26
R05 1 2 4 8 15 21 28
R1 1 2 4 8 15 22 31
R5 1 2 4 8 16 26 36

R10 1 2 4 8 16 28 35
R20 1 2 4 8 16 28 37
R25 1 2 4 8 16 28 38
R50 1 2 4 8 16 28 38

2 R0 1 2 3.9 5.7 6.8 8.3 8.7
R05 1 2 4 7.9 12 14 17
R1 1 2 4 8 14 17 19
R5 1 2 4 8 15 21 24

R10 1 2 4 8 15 22 26
R20 1 2 4 8 16 23 28
R25 1 2 4 8 16 23 29
R50 1 2 4 8 16 24 28

4 R0 1 2 3.4 4 4.2 4.7 4.7
R05 1 2 4 7.5 9.7 11 11
R1 1 2 4 7.6 9.9 12 12
R5 1 2 4 7.5 11 14 15

R10 1 2 4 7.5 11 14 16
R20 1 2 4 7.5 12 15 17
R25 1 2 4 7.7 12 15 17
R50 1 2 4 7.7 13 15 19

8 R0 1 2 3 3.1 3 3.5 3.6
R05 1 2 4 5.7 6.3 7.8 8.3
R1 1 2 3.7 5.9 7.2 7.7 8.5
R5 1 2 3.9 6 6.9 7.9 8.9

R10 1 2 3.5 6 6.7 8.3 8.3
R20 1 2 3.5 5.5 7.5 8.3 8
R25 1 2 3.5 5.3 7 8.2 8.7
R50 1 2 3.5 5.7 6.7 8 8.3

16 R0 1 2 2.2 2.4 2.5 2.8 3
R05 1 2 3.3 4.5 5.8 5.5 5.9
R1 1 2 3.4 4.4 5.8 6 6.2
R5 1 2 3.3 3.9 5.5 6 5.2

R10 1 2 2.6 3.1 4.8 4.7 5.3
R20 1 2 2.4 3 4.7 4 4.5
R25 1 2 2.4 2.8 4.3 4 4.3
R50 1 2 2.4 2.6 3.1 3.5 4.2

32 R0 1 1.8 2 2 2.1 2.4 2.3
R05 1 1.8 2.6 3.3 3.4 4.1 4
R1 1 1.8 2.5 3.5 3.8 3.6 4.5
R5 1 1.8 3 2.8 3.5 3.6 3.3

R10 1 1.8 2.4 2.8 2.8 3 2.5
R20 1 1.8 2.3 2.4 2.6 2.5 2.6
R25 1 1.8 2.1 2.3 2.2 2.5 2.6
R50 1 1.8 2 2.1 2 2.5 2.4

64 R0 1 1.3 1.9 2 2 1.9 1.9
R05 1 1.3 2.5 2.8 3.1 2.8 2.6
R1 1 1.3 2.6 3.1 3 2.6 2.9

Continued on next page

140



141

1 2 4 8 16 32 64
R5 1 1.3 2.2 2.5 2.6 2.4 1.9

R10 1 1.3 2 2.3 2.6 2 2.1
R20 1 1.3 2.1 2.1 2.2 1.9 1.9
R25 1 1.3 1.9 2.1 2.3 2.1 1.9
R50 1 1.3 2 2.1 2.1 1.9 1.9

Table C.1: For comparing the effect on repair rate on the GA the
average maximal Generational Max Clique of Generation.



142

1 2 4 8 16 32 64

1 R0 1 1 1 0.53 7.1E-05 1E-17 5.4E-48
R05 1 1 1 1 0.28 2.1E-09 6.9E-54
R1 1 1 1 1 0.63 8.3E-11 1.6E-49
R5 1 1 1 1 0.99 1.3E-07 5.5E-40

R10 1 1 1 1 1 0.00021 1.1E-39
R20 1 1 1 1 1 0.0032 2.4E-38
R25 1 1 1 1 1 0.00033 5.8E-40
R50 1 1 1 1 1 0.0033 1.4E-41

2 R0 1 1 0.9 0.017 6.6E-10 8.1E-30 2E-83
R05 1 1 1 0.77 0.0037 4.6E-20 2.2E-70
R1 1 1 1 0.89 0.035 5.3E-18 2.1E-63
R5 1 1 1 0.88 0.14 6.5E-14 3.7E-60

R10 1 1 1 0.95 0.23 4.2E-11 5.2E-56
R20 1 1 1 1 0.34 2.9E-08 3.5E-54
R25 1 1 1 1 0.33 7.8E-12 5.8E-53
R50 1 1 1 1 0.47 5.9E-08 1.8E-54

4 R0 1 0.99 0.35 0.00043 1.5E-12 2.9E-34 8.2E-88
R05 1 1 0.78 0.15 4.3E-06 7E-26 2.5E-78
R1 1 1 0.82 0.18 5.1E-07 2.1E-25 1.9E-75
R5 1 0.99 0.81 0.21 0.00017 6.4E-21 1.3E-74

R10 1 0.99 0.87 0.19 2.5E-05 1.2E-19 1.2E-70
R20 1 0.99 0.91 0.27 0.0017 6.4E-21 6.1E-68
R25 1 0.99 0.87 0.34 0.00087 6.1E-21 2.6E-69
R50 1 0.99 0.89 0.31 0.00097 1.2E-19 1.6E-66

8 R0 1 0.68 0.11 8.5E-05 1.7E-13 3.6E-35 5E-89
R05 1 0.79 0.36 0.0042 1.2E-09 5.6E-31 4.7E-84
R1 1 0.78 0.37 0.0071 1.5E-09 1.4E-30 3.6E-82
R5 1 0.74 0.34 0.022 1.4E-07 2.3E-29 4.9E-81

R10 1 0.7 0.31 0.014 4.3E-10 2.7E-29 6.4E-80
R20 1 0.61 0.28 0.019 2.6E-09 1.3E-29 4.3E-81
R25 1 0.64 0.27 0.024 4.9E-10 1.4E-29 9.5E-82
R50 1 0.67 0.3 0.024 1.4E-09 1.3E-29 4.6E-81

16 R0 0.99 0.26 0.036 2.5E-05 5.2E-14 5.9E-36 1.1E-89
R05 1 0.33 0.096 0.00038 1.9E-10 3.6E-34 2.8E-87
R1 1 0.33 0.11 0.00024 6.2E-12 5.6E-33 1E-85
R5 1 0.25 0.085 0.00016 1.5E-11 5.8E-30 2.1E-87

R10 1 0.23 0.059 0.0005 7.4E-11 5E-33 9E-86
R20 0.99 0.21 0.043 5.6E-05 6.2E-11 9.9E-35 3.9E-88
R25 1 0.21 0.042 0.00016 8.6E-12 1.2E-34 9.1E-87
R50 1 0.21 0.043 5.8E-05 5.4E-11 8.1E-35 2.1E-88

32 R0 0.74 0.078 0.0098 7.5E-06 1.5E-14 1.9E-36 2.9E-90
R05 0.95 0.1 0.029 3.4E-05 8.1E-14 2.8E-34 1.6E-88
R1 0.95 0.089 0.023 7.3E-05 3.8E-12 2E-35 6.7E-89
R5 0.95 0.091 0.023 2.2E-05 5E-13 1.4E-35 2.5E-89

R10 0.95 0.073 0.015 0.00021 9.5E-14 3.1E-36 2.1E-89
R20 0.96 0.069 0.011 1.1E-05 8.4E-14 2.4E-36 4.7E-90
R25 0.97 0.067 0.0094 9.5E-06 1.9E-14 2.9E-36 4.9E-90
R50 0.97 0.067 0.0086 8.3E-06 1.6E-14 3.5E-36 4.7E-90

64 R0 0.46 0.019 0.0025 2E-06 4E-15 4.1E-37 7.4E-91
R05 0.67 0.02 0.0071 8.1E-06 4.6E-14 5.6E-36 4.7E-90
R1 0.67 0.024 0.0082 1.3E-05 3E-14 2E-36 4.4E-90
R5 0.7 0.016 0.004 4.3E-06 1.2E-14 1.1E-36 1.1E-90

R10 0.73 0.018 0.0034 5.1E-06 1E-14 4.9E-37 1.6E-90
R20 0.78 0.016 0.0027 2.2E-06 5.2E-15 3.7E-37 8.1E-91
R25 0.79 0.017 0.0023 2E-06 8.7E-15 7.1E-37 7.5E-91
R50 0.83 0.016 0.0023 2.3E-06 3.7E-15 2.9E-37 8E-91

Table C.2: For comparing the effect on repair rate on the GA the
average maximal Max Clique Cover of Generation.



143

1 2 4 8 16 32 64

1 R0 55.70 51.70 104.30 83.00 62.50 35.50 59.25
R05 52.95 52.05 52.70 55.30 69.70 83.55 93.40
R1 52.95 52.15 52.50 54.85 66.95 82.10 96.10
R5 54.20 53.35 54.35 57.10 70.35 101.10 130.10

R10 54.95 53.65 54.35 57.30 71.05 113.30 147.45
R20 55.05 54.35 54.65 57.75 72.35 118.75 156.25
R25 55.50 54.20 54.80 57.65 72.90 123.35 160.35
R50 56.35 55.05 55.50 58.45 73.95 128.50 172.00

2 R0 53.35 36.85 26.50 28.30 47.70 29.40 31.20
R05 53.95 53.05 53.90 61.10 68.55 73.35 79.70
R1 54.40 53.15 53.75 57.85 66.40 71.40 77.30
R5 56.30 55.45 55.75 59.80 78.25 93.00 104.75

R10 57.00 55.60 56.20 59.80 87.65 105.15 119.45
R20 57.30 56.00 56.70 60.45 93.35 116.80 133.75
R25 57.30 55.90 56.60 60.55 95.30 120.85 138.75
R50 58.00 57.00 57.35 61.50 101.40 125.30 145.45

4 R0 26.05 27.10 27.10 28.25 61.50 29.15 30.45
R05 56.30 55.30 57.90 62.60 89.25 67.90 71.60
R1 57.20 55.55 56.60 60.35 66.10 68.55 69.85
R5 60.55 58.35 60.00 62.75 71.40 76.95 85.15

R10 61.00 60.20 59.55 64.05 77.55 84.45 96.80
R20 61.65 59.80 60.00 65.00 82.20 91.55 104.35
R25 60.90 59.55 60.15 66.45 81.30 96.45 109.20
R50 62.30 60.25 60.65 66.45 86.90 104.00 119.25

8 R0 27.10 26.65 28.15 38.30 61.60 30.65 32.20
R05 61.20 57.80 61.15 65.25 67.40 68.45 72.90
R1 63.00 58.05 63.90 62.40 65.75 69.20 69.85
R5 67.65 61.35 62.60 61.20 69.50 69.55 72.60

R10 68.15 61.60 64.95 62.65 73.90 74.85 74.60
R20 69.00 59.85 65.60 41.00 75.15 74.00 77.70
R25 68.95 59.05 62.75 38.10 70.60 76.85 80.60
R50 68.60 60.05 48.70 38.70 78.25 79.55 82.30

16 R0 30.65 26.50 30.40 28.75 58.95 31.35 34.25
R05 73.90 55.95 60.75 64.25 67.00 71.30 76.80
R1 77.50 57.05 61.90 63.80 65.55 69.10 74.45
R5 83.40 58.85 63.10 65.70 66.55 71.25 76.15

R10 84.30 58.75 65.55 70.00 69.30 76.45 76.25
R20 84.50 58.60 64.30 71.35 68.75 76.95 78.80
R25 85.10 58.70 64.60 71.15 72.10 79.85 80.55
R50 85.75 59.35 65.05 71.10 78.00 82.45 81.15

32 R0 35.05 26.20 27.25 28.45 63.15 32.65 39.15
R05 100.75 54.75 59.35 61.75 65.30 73.20 103.00
R1 107.25 54.50 60.10 64.50 67.10 72.50 88.40
R5 113.90 56.90 60.65 64.55 68.05 73.35 88.65

R10 115.35 56.45 61.30 63.90 68.15 74.40 87.55
R20 117.60 56.55 60.20 65.80 67.45 74.35 84.20
R25 118.20 56.60 60.40 64.30 68.60 74.75 84.65
R50 120.20 56.90 60.40 65.10 68.45 74.85 87.40

64 R0 39.55 26.10 27.50 28.95 31.85 37.80 48.50
R05 136.10 53.85 57.75 61.70 68.25 57.85 53.20
R1 135.00 53.60 57.60 61.45 67.60 46.25 51.65
R5 148.25 54.25 58.75 63.10 69.20 81.85 73.20

R10 155.30 54.45 58.60 62.80 68.25 80.65 101.75
R20 165.65 54.45 58.25 62.55 68.80 79.50 102.55
R25 166.10 54.75 58.65 62.65 68.35 79.35 102.10
R50 174.50 54.85 58.55 62.65 68.10 79.50 102.50

Table C.3: For comparing the effect on repair rate on the GA Sum of
Time Differences per Generation.



144

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

0 50 100 150 200 250 300

F
itn

es
s

Generation

0%

.5%

1%

5%

10%

25%

50%

Figure C.1: For the GA–duplication of coding segments experiment
and the fc4–8 graph, best fitness per generation. (Averaged over 20
runs)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300

C
liq

ue
 C

ov
er

Generation

0%

0.5%

1%

5%

10%

25%

50%

Figure C.2: For the GA–duplication of coding segments experiment and
the fc4–8 graph, generational clique cover per generation. (Averaged
over 20 runs)



145

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0 50 100 150 200 250 300

M
ax

 C
liq

ue

Generation

0%

0.5%

1%

5%
10%

25%

50%

Figure C.3: For the GA–duplication of coding segments experiment and
the fc4–8 graph, generational max clique per generation. (Averaged
over 20 runs)



APPENDIX D

Data for Collective Adaptation and Duplication of Coding Segments
for Heuristics

1 2 4 8 16 32 64

1 CMRS 1 2 4 8 14 20 27
CMHC 1 2 4 8 14 22 33
CMSA 1 2 4 8 13 21 31
CMGA 1 2 4 8 16 28 35
CMGP 1 2 4 6.3 7.8 8.1 8.8

2 CMRS 1 2 4 7.8 12 16 20
CMHC 1 2 4 7.5 13 20 32
CMSA 1 2 4 7.7 13 20 30
CMGA 1 2 4 8 15 22 26
CMGP 1 2 4 4.9 5.2 5.1 5.5

4 CMRS 1 2 4 7.6 10 12 14
CMHC 1 2 4 6.8 12 18 27
CMSA 1 2 4 7.3 12 20 28
CMGA 1 2 4 7.5 11 14 16
CMGP 1 2 3.4 4 4.4 4 4

8 CMRS 1 2 3.9 6.8 9.6 10 11
CMHC 1 2 4 6.5 12 17 23
CMSA 1 2 4 6.8 12 17 25
CMGA 1 2 3.5 6 6.7 8.3 8.3
CMGP 1 2 3 3.3 3.7 3.5 3.1

16 CMRS 1 2 3.7 6.3 8.3 9.2 10
CMHC 1 2 3.5 6.3 11 16 20
CMSA 1 2 3.6 6.7 11 16 23
CMGA 1 2 2.6 3.1 4.8 4.7 5.3
CMGP 1 2 2.4 2.9 2.6 2.7 2.6

32 CMRS 1 2 3.3 6.2 8 8.9 9.3
CMHC 1 2 3.3 5.7 9.8 14 18
CMSA 1 2 3.4 5.8 9.9 14 17
CMGA 1 1.8 2.4 2.8 2.8 3 2.5
CMGP 1 2 2 2.4 2.1 2.3 2.5

64 CMRS 1 2 3.4 5.8 7 7.8 7.8
CMHC 1 2 3.1 5.6 8.7 12 15
CMSA 1 2 3 5.6 9.3 12 14
CMGA 1 1.3 2 2.3 2.6 2 2.1
CMGP 1 1.9 2 2.1 2.1 2.3 2.2

Table D.1: For comparing collective adaptation with duplication of
coding segments on the heuristics the average maximal Generational
Max Clique of Generation.

146



147

1 2 4 8 16 32 64

1 CMRS 1 1 1 1 0.0035 4.9E-16 2.2E-58
CMHC 1 1 1 1 0.11 6.7E-12 3.3E-43
CMSA 1 1 1 1 0.056 1.2E-14 8E-45
CMGA 1 1 1 1 1 0.00021 1.1E-39
CMGP 1 1 1 0.15 1.2E-07 5.6E-31 2.3E-82

2 CMRS 1 1 1 0.5 6E-05 1.2E-20 1.3E-67
CMHC 1 1 1 0.83 0.0044 6.4E-14 1.4E-47
CMSA 1 1 1 0.8 0.0042 1E-14 8.1E-50
CMGA 1 1 1 0.95 0.23 4.2E-11 3.8E-60
CMGP 1 0.95 0.84 0.017 3.3E-11 1.6E-33 1.6E-86

4 CMRS 1 1 0.79 0.19 5E-06 1.3E-25 1.4E-76
CMHC 1 1 1 0.22 0.0017 1.3E-15 1.4E-48
CMSA 1 1 1 0.41 0.00026 5.9E-14 3.7E-50
CMGA 1 0.99 0.87 0.19 2.5E-05 1.2E-19 1.2E-70
CMGP 1 0.51 0.41 0.0015 1.2E-11 2.6E-34 4.7E-88

8 CMRS 1 0.99 0.32 0.04 4.7E-08 2.2E-27 5.3E-81
CMHC 1 1 0.89 0.057 3.1E-05 1.4E-18 1.3E-54
CMSA 1 1 0.85 0.11 0.0014 1.7E-18 5.3E-56
CMGA 1 0.7 0.31 0.014 4.3E-10 2.7E-29 6.4E-80
CMGP 1 0.26 0.13 0.00038 3.2E-12 4.4E-35 1E-88

16 CMRS 1 0.58 0.13 0.011 1.3E-08 1E-27 7.7E-83
CMHC 1 0.92 0.39 0.027 2.1E-05 1.4E-18 1.8E-68
CMSA 1 0.9 0.43 0.034 8.9E-05 2.1E-21 1.8E-50
CMGA 1 0.23 0.059 0.0005 7.4E-11 5E-33 9E-86
CMGP 1 0.094 0.041 0.00016 1.8E-13 1.1E-35 2.5E-89

32 CMRS 1 0.25 0.05 0.0059 6.4E-09 6.2E-31 2.2E-81
CMHC 1 0.47 0.17 0.0072 3.8E-07 4.7E-22 4.9E-72
CMSA 1 0.42 0.14 0.0069 6.3E-07 5.2E-23 1.9E-67
CMGA 0.95 0.073 0.015 0.00021 9.5E-14 3.1E-36 2.1E-89
CMGP 1 0.037 0.013 2E-05 3.4E-14 2.4E-36 7.2E-90

64 CMRS 0.93 0.096 0.02 0.0013 2.7E-11 6.2E-33 5E-85
CMHC 1 0.15 0.051 0.0028 3.3E-06 2.1E-26 3.5E-74
CMSA 1 0.12 0.047 0.0021 2.5E-08 3.2E-27 1.5E-74
CMGA 0.73 0.018 0.0034 5.1E-06 1E-14 4.9E-37 1.6E-90
CMGP 1 0.017 0.0038 4E-06 8.4E-15 6.7E-37 1.6E-90

Table D.2: For comparing collective adaptation with duplication of
coding segments on the heuristics the average maximal Max Clique
Cover of Generation.



148

1 2 4 8 16 32 64

1 CMRS 1 2 4 8 14 20 28
CMHC 1 2 4 8 15 24 36
CMSA 1 2 4 8 14 23 36
CMGA 1 2 4 8 16 28 38
CMGP 1 2 4 8 16 31 55

2 CMRS 1 2 4 7.8 12 17 23
CMHC 1 2 4 7.9 14 24 35
CMSA 1 2 4 8 13 24 33
CMGA 1 2 4 8 16 24 62
CMGP 1 2 4 8 16 30 52

4 CMRS 1 2 4 7.6 11 15 22
CMHC 1 2 4 7.8 14 22 30
CMSA 1 2 4 8 14 23 30
CMGA 1 2 4 8 14 20 21
CMGP 1 2 4 8 15 27 39

8 CMRS 1 2 4 7.3 10 13 16
CMHC 1 2 4 7.5 12 19 26
CMSA 1 2 4 7.8 13 19 26
CMGA 1 2 4 7.9 14 20 24
CMGP 1 2 4 7.7 13 21 24

16 CMRS 1 2 4 6.5 8.5 10 11
CMHC 1 2 4 7.3 12 17 20
CMSA 1 2 4 7.3 12 17 24
CMGA 1 2 4 7.3 11 15 16
CMGP 1 2 4 7.1 10 13 15

32 CMRS 1 2 3.7 6.5 8.3 8.9 9.9
CMHC 1 2 3.8 6.5 10 15 18
CMSA 1 2 3.9 6.3 10 14 18
CMGA 1 1.8 3.9 6.4 7.7 8.3 9.6
CMGP 1 2 3.8 5.8 7.3 7.7 8.8

64 CMRS 1 2 3.5 5.8 7.1 8.2 8
CMHC 1 2 3.6 5.8 8.9 12 15
CMSA 1 2 3.5 5.8 9.3 12 15
CMGA 1 1.3 2.9 4.5 4.5 4.8 4.6
CMGP 1 1.9 3.3 4.1 5 4.5 5.3

Table D.3: For comparing collective adaptation with duplication of cod-
ing segments on the heuristics the average maximal Collective Memory
Max Clique of Generation.



149

1 2 4 8 16 32 64

1 CMRS 1 1 1 1 0.0069 5.4E-16 1E-53
CMHC 1 1 1 1 0.5 9.4E-09 1E-36
CMSA 1 1 1 1 0.35 1.7E-06 5.6E-40
CMGA 1 1 1 1 1 0.0018 9.8E-30
CMGP 1 1 1 1 0.9 0.6 1.3E-05

2 CMRS 1 1 1 0.96 0.00022 2.5E-19 6.2E-62
CMHC 1 1 1 0.91 0.11 9E-07 1.2E-38
CMSA 1 1 1 0.92 0.11 2.6E-05 6.8E-42
CMGA 1 1 1 0.98 0.48 5E-05 0.13
CMGP 1 1 0.99 0.52 0.5 0.1 1E-07

4 CMRS 1 1 1 0.46 7.1E-06 1.3E-15 2.6E-59
CMHC 1 1 1 0.41 0.065 1.1E-09 1.4E-40
CMSA 1 1 1 0.57 0.044 8.8E-07 1.4E-40
CMGA 1 1 0.94 0.39 0.15 1.5E-08 3.3E-42
CMGP 1 0.94 0.69 0.26 0.11 0.0004 1.2E-35

8 CMRS 1 1 0.81 0.12 2.8E-05 1.2E-18 3.1E-68
CMHC 1 1 0.92 0.17 0.00038 7.7E-16 6.4E-52
CMSA 1 1 0.88 0.22 0.015 3.7E-13 4.6E-53
CMGA 1 0.74 0.42 0.12 0.021 5.2E-10 1.4E-56
CMGP 1 0.63 0.29 0.099 0.0081 1.9E-11 1.4E-60

16 CMRS 1 0.92 0.47 0.027 1.6E-08 3.2E-26 1.9E-79
CMHC 1 0.92 0.53 0.068 0.00051 3E-17 2.3E-67
CMSA 1 0.9 0.56 0.062 0.0015 4.5E-20 1.7E-48
CMGA 1 0.24 0.12 0.032 0.00021 4.8E-21 5.5E-71
CMGP 1 0.24 0.098 0.029 2.9E-05 8.9E-25 2.8E-71

32 CMRS 1 0.47 0.2 0.01 7.2E-09 9.8E-31 2.3E-81
CMHC 1 0.47 0.23 0.016 2.1E-06 3.2E-21 1.1E-70
CMSA 1 0.42 0.2 0.014 3.3E-06 5.1E-22 1.9E-66
CMGA 1 0.073 0.041 0.0066 3.9E-08 7.7E-29 1.6E-80
CMGP 1 0.073 0.039 0.0028 9.7E-09 3.4E-30 1.1E-82

64 CMRS 1 0.16 0.058 0.0021 4E-11 1.6E-31 8.1E-85
CMHC 1 0.15 0.058 0.0038 3.3E-06 1.2E-25 3.9E-72
CMSA 1 0.12 0.059 0.0032 7.2E-08 1.5E-26 4.5E-74
CMGA 0.94 0.019 0.0064 0.00027 1.8E-12 1.3E-32 2.5E-86
CMGP 1 0.027 0.012 4.4E-05 3.8E-12 1.4E-35 3.1E-87

Table D.4: For comparing collective adaptation with duplication of cod-
ing segments on the heuristics the average maximal Collective Memory
Clique Cover of Generation.



150

1 2 4 8 16 32 64

1 CMRS 22.50 21.85 22.10 29.00 90.20 13049.50 71622.00
CMHC 14.15 15.70 33.55 23.15 169.05 19966.30 137967.50
CMSA 22.55 22.10 22.00 24.80 135.55 35776.00 109330.00
CMGA 32.85 32.50 34.50 23.75 27.25 816.10 2041.95
CMGP 88.20 95.40 169.85 454.25 521.60 521.25 521.00

2 CMRS 23.20 22.75 23.20 31.55 114.35 1319.45 8125.15
CMHC 15.95 20.65 16.50 76.15 115.00 6522.60 18032.00
CMSA 23.40 22.80 22.95 37.95 230.55 9201.10 32911.50
CMGA 19.10 20.70 20.40 23.05 42.50 89.35 49.10
CMGP 80.70 94.50 189.60 469.70 515.05 500.15 486.30

4 CMRS 24.95 24.05 30.50 35.30 82.25 330.20 754.05
CMHC 14.40 14.50 16.25 35.30 93.45 1486.15 3478.05
CMSA 25.00 24.30 26.20 45.90 171.10 1380.90 3701.45
CMGA 20.90 23.25 24.50 27.80 36.50 63.00 45.60
CMGP 85.40 85.55 238.05 440.45 418.15 452.15 507.35

8 CMRS 35.40 31.05 39.10 43.80 77.10 137.85 263.65
CMHC 18.20 16.45 31.20 45.70 69.20 501.00 1080.40
CMSA 28.35 26.30 41.35 49.30 117.80 784.95 1799.25
CMGA 28.95 25.40 29.15 27.65 32.80 43.15 28.85
CMGP 93.15 89.30 166.00 353.80 232.20 388.85 206.40

16 CMRS 35.10 25.25 29.35 33.35 44.95 70.45 95.75
CMHC 23.20 18.05 35.10 40.45 49.20 81.30 128.20
CMSA 35.15 28.20 52.35 52.90 65.50 130.80 224.80
CMGA 31.65 22.65 59.50 67.75 65.10 52.95 53.65
CMGP 237.25 83.10 128.75 227.65 274.35 276.15 290.70

32 CMRS 49.45 29.50 28.45 30.15 34.00 39.15 46.55
CMHC 45.50 20.45 31.35 34.50 40.05 40.70 56.10
CMSA 51.00 26.15 41.50 48.40 51.20 130.30 164.80
CMGA 88.25 38.40 41.30 44.60 45.70 30.60 42.65
CMGP 496.85 86.20 107.70 160.00 182.40 176.80 222.00

64 CMRS 70.25 23.25 26.15 77.75 28.75 30.55 33.40
CMHC 59.65 16.25 23.55 27.85 31.15 37.40 34.35
CMSA 88.35 23.95 32.90 37.95 44.50 48.55 52.85
CMGA 98.15 35.85 40.25 43.90 46.85 59.60 82.10
CMGP 910.45 107.30 106.50 113.80 127.60 151.80 109.50

Table D.5: For comparing collective adaptation with duplication of cod-
ing segments on the heuristics Sum of Time Differences per Generation.



APPENDIX E

Data for Varying Collective Adaptation for GA

1 2 4 8 16 32 64

1 GA 1 2 4 7.3 12 17 26
CM 1 2 4 8 16 28 35
PA 1 2 4 8 16 28 35

MG64 1 2 4 8 16 32 64
MG128 1 2 4 8 16 32 64
LG64 1 2 4 8 16 32 64

LG128 1 2 4 8 16 32 64
2 GA 1 2 3.9 5.7 6.8 8.3 8.7

CM 1 2 4 8 15 22 26
PA 1 2 4 8 15 22 26

MG64 1 2 4 8 16 32 64
MG128 1 2 4 8 16 32 64
LG64 1 2 4 8 16 32 64

LG128 1 2 4 8 16 32 64
4 GA 1 2 3.4 4 4.2 4.7 4.7

CM 1 2 4 7.5 11 14 16
PA 1 2 4 7.5 11 14 16

MG64 1 2 4 8 16 32 64
MG128 1 2 4 8 16 32 64
LG64 1 2 4 8 16 30 51

LG128 1 2 4 8 16 31 54
8 GA 1 2 3 3.1 3 3.5 3.6

CM 1 2 3.5 6 7.6 8.3 8.3
PA 1 2 3.5 6 6.7 8.3 8.3

MG64 1 2 4 8 16 32 64
MG128 1 2 4 8 16 32 64
LG64 1 2 4 8 15 23 28

LG128 1 2 4 8 15 24 32
16 GA 1 2 2.2 2.4 2.5 2.8 3

CM 1 2 2.6 3.1 4.3 4.7 5.3
PA 1 2 2.6 3.1 4.8 4.7 5.3

MG64 1 2 4 8 16 32 64
MG128 1 2 4 8 16 32 64
LG64 1 2 4 7.3 12 15 17

LG128 1 2 4 7 11 15 17
32 GA 1 1.8 2 2 2.1 2.4 2.3

CM 1 1.8 2.4 2.8 2.7 3 2.5
PA 1 1.8 2.4 2.8 2.8 3 2.5

MG64 1 1.9 4 8 16 32 64
MG128 1 2 4 8 16 32 64
LG64 1 1.9 4 6.3 8.3 9.8 9.9

LG128 1 2 3.9 6 8 9.3 10
64 GA 1 1.3 1.9 2 2 1.9 1.9

CM 1 1.3 2 2.3 2.6 2 2.1
PA 1 1.3 2 2.3 2.6 2 2.1

MG64 1 1.4 4 8 16 32 62
MG128 1 1.8 4 8 16 32 64
LG64 1 1.5 3.4 5 5.2 6 6

LG128 1 2 3.4 4 5.3 5.8 5.6

Table E.1: For comparing the effect of collective adaptation with GA
the average maximal Generational Max Clique of Generation.

151



152

1 2 4 8 16 32 64

1 GA 1 1 1 0.53 7.1E-05 1E-17 5.4E-48
CM 1 1 1 1 1 0.00021 1.1E-39
PA 1 1 1 1 1 0.00021 1.1E-39

MG64 1 1 1 1 1 1 1
MG128 1 1 1 1 1 1 1
LG64 1 1 1 1 1 1 1

LG128 1 1 1 1 1 1 1
2 GA 1 1 0.9 0.017 6.6E-10 8.1E-30 2E-83

CM 1 1 1 0.95 0.23 4.2E-11 5.2E-56
PA 1 1 1 0.95 0.23 4.2E-11 3.8E-60

MG64 1 1 1 1 1 1 1
MG128 1 1 1 1 1 1 1
LG64 1 1 1 1 1 0.95 0.38

LG128 1 1 1 1 1 1 0.95
4 GA 1 0.99 0.35 0.00043 1.5E-12 2.9E-34 8.2E-88

CM 1 0.99 0.87 0.19 2.5E-05 1.2E-19 1.2E-70
PA 1 0.99 0.87 0.19 2.5E-05 1.2E-19 1.2E-70

MG64 1 0.99 1 1 1 1 0.75
MG128 1 1 1 1 1 1 0.75
LG64 1 1 0.98 0.81 0.29 0.027 7.1E-17

LG128 1 1 1 0.99 0.64 0.1 8.5E-10
8 GA 1 0.68 0.11 8.5E-05 1.7E-13 3.6E-35 5E-89

CM 1 0.7 0.31 0.014 2.4E-08 2.7E-29 6.4E-80
PA 1 0.7 0.31 0.014 4.3E-10 2.7E-29 6.4E-80

MG64 1 0.67 0.88 0.91 0.94 0.79 0.38
MG128 1 0.93 0.97 0.99 1 0.79 0.38
LG64 1 0.68 0.44 0.15 0.028 7.5E-09 5.2E-52

LG128 1 0.92 0.78 0.34 0.042 2.2E-08 7.2E-49
16 GA 0.99 0.26 0.036 2.5E-05 5.2E-14 5.9E-36 1.1E-89

CM 1 0.23 0.059 0.0005 5.6E-11 5E-33 9E-86
PA 1 0.23 0.059 0.0005 7.4E-11 5E-33 9E-86

MG64 1 0.22 0.4 0.41 0.43 0.36 0.17
MG128 1 0.45 0.6 0.7 0.69 0.4 0.18
LG64 1 0.23 0.12 0.034 0.00021 2E-21 2.8E-71

LG128 1 0.45 0.2 0.029 0.00021 4.6E-22 6.4E-70
32 GA 0.74 0.078 0.0098 7.5E-06 1.5E-14 1.9E-36 2.9E-90

CM 0.95 0.073 0.015 0.00021 4E-14 3.1E-36 2.1E-89
PA 0.95 0.073 0.015 0.00021 9.5E-14 3.1E-36 2.1E-89

MG64 1 0.067 0.098 0.13 0.13 0.12 0.046
MG128 1 0.14 0.19 0.25 0.26 0.18 0.086
LG64 1 0.07 0.038 0.0064 6.9E-09 2.1E-24 1.6E-80

LG128 1 0.15 0.048 0.0045 9.6E-10 5.2E-28 1.6E-80
64 GA 0.46 0.019 0.0025 2E-06 4E-15 4.1E-37 7.4E-91

CM 0.73 0.018 0.0034 5.1E-06 1E-14 4.9E-37 1.6E-90
PA 0.73 0.018 0.0034 5.1E-06 1E-14 4.9E-37 1.6E-90

MG64 0.94 0.017 0.026 0.033 0.034 0.029 0.0024
MG128 1 0.037 0.051 0.065 0.073 0.067 0.02
LG64 0.93 0.018 0.0098 0.00027 3.4E-12 2.4E-31 3.8E-83

LG128 1 0.041 0.012 2.6E-05 1.7E-11 1.3E-32 2.5E-85

Table E.2: For comparing the effect of collective adaptation with GA
the average maximal Max Clique Cover of Generation.



153

1 2 4 8 16 32 64

1 GA 1 2 4 7.3 12 17 26
CM 1 2 4 8 16 28 35
PA 1 2 4 8 16 28 38

MG64 1 2 4 8 16 32 64
MG128 1 2 4 8 16 32 64
LG64 1 2 4 8 16 32 64

LG128 1 2 4 8 16 32 64
2 GA 1 2 3.9 5.7 6.8 8.3 8.7

CM 1 2 4 8 15 22 26
PA 1 2 4 8 16 24 62

MG64 1 2 4 8 16 32 64
MG128 1 2 4 8 16 32 64
LG64 1 2 4 8 16 32 64

LG128 1 2 4 8 16 32 64
4 GA 1 2 3.4 4 4.2 4.7 4.7

CM 1 2 4 7.5 11 14 16
PA 1 2 4 8 14 20 21

MG64 1 2 4 8 16 32 64
MG128 1 2 4 8 16 32 64
LG64 1 2 4 8 16 30 51

LG128 1 2 4 8 16 31 54
8 GA 1 2 3 3.1 3 3.5 3.6

CM 1 2 3.5 6 7.6 8.3 8.3
PA 1 2 4 7.9 14 20 24

MG64 1 2 4 8 16 32 64
MG128 1 2 4 8 16 32 64
LG64 1 2 4 8 15 23 28

LG128 1 2 4 8 15 24 32
16 GA 1 2 2.2 2.4 2.5 2.8 3

CM 1 2 2.6 3.1 4.3 4.7 5.3
PA 1 2 4 7.3 11 15 16

MG64 1 2 4 8 16 32 64
MG128 1 2 4 8 16 32 64
LG64 1 2 4 7.3 12 16 17

LG128 1 2 4 7 11 15 17
32 GA 1 1.8 2 2 2.1 2.4 2.3

CM 1 1.8 2.4 2.8 2.7 3 2.5
PA 1 1.8 3.9 6.4 7.7 8.3 9.6

MG64 1 1.9 4 8 16 32 64
MG128 1 2 4 8 16 32 64
LG64 1 1.9 4 6.3 8.3 9.8 10

LG128 1 2 3.9 6 8 9.3 10
64 GA 1 1.3 1.9 2 2 1.9 1.9

CM 1 1.3 2 2.3 2.6 2 2.1
PA 1 1.3 2.9 4.5 4.5 4.8 4.6

MG64 1 1.4 4 8 16 32 62
MG128 1 1.8 4 8 16 32 64
LG64 1 1.5 3.4 5 5.2 6 6

LG128 1 2 3.4 4 5.3 5.8 5.6

Table E.3: For comparing the effect of collective adaptation with GA
the average maximal Collective Memory Max Clique of Generation.



154

1 2 4 8 16 32 64

1 GA 1 1 1 0.53 7.1E-05 1E-17 5.4E-48
CM 1 1 1 1 1 0.00022 2.3E-39
PA 1 1 1 1 1 0.0018 9.8E-30

MG64 1 1 1 1 1 1 1
MG128 1 1 1 1 1 1 1
LG64 1 1 1 1 1 1 1

LG128 1 1 1 1 1 1 1
2 GA 1 1 0.9 0.017 6.6E-10 8.1E-30 2E-83

CM 1 1 1 0.95 0.23 4.4E-11 1E-55
PA 1 1 1 0.98 0.48 5E-05 0.13

MG64 1 1 1 1 1 1 1
MG128 1 1 1 1 1 1 1
LG64 1 1 1 1 1 0.95 0.38

LG128 1 1 1 1 1 1 0.95
4 GA 1 0.99 0.35 0.00043 1.5E-12 2.9E-34 8.2E-88

CM 1 1 0.9 0.19 2.8E-05 1.2E-19 1.2E-70
PA 1 1 0.94 0.39 0.15 1.5E-08 3.3E-42

MG64 1 0.99 1 1 1 1 1
MG128 1 1 1 1 1 1 1
LG64 1 1 0.98 0.81 0.29 0.027 7.1E-17

LG128 1 1 1 0.99 0.64 0.1 8.5E-10
8 GA 1 0.68 0.11 8.5E-05 1.7E-13 3.6E-35 5E-89

CM 1 0.74 0.34 0.014 2.4E-08 2.7E-29 6.4E-80
PA 1 0.74 0.42 0.12 0.021 5.2E-10 1.4E-56

MG64 1 0.67 0.88 0.91 0.94 0.94 0.89
MG128 1 0.93 0.97 0.99 1 0.99 1
LG64 1 0.68 0.44 0.15 0.028 7.5E-09 5.2E-52

LG128 1 0.92 0.78 0.34 0.042 2.2E-08 7.2E-49
16 GA 0.99 0.26 0.036 2.5E-05 5.2E-14 5.9E-36 1.1E-89

CM 1 0.24 0.064 0.00051 5.6E-11 5E-33 9E-86
PA 1 0.24 0.12 0.032 0.00021 4.8E-21 5.5E-71

MG64 1 0.22 0.4 0.41 0.43 0.45 0.27
MG128 1 0.45 0.6 0.7 0.71 0.74 0.66
LG64 1 0.23 0.12 0.034 0.00021 2E-21 2.8E-71

LG128 1 0.45 0.2 0.029 0.00021 4.6E-22 6.4E-70
32 GA 0.74 0.078 0.0098 7.5E-06 1.5E-14 1.9E-36 2.9E-90

CM 1 0.073 0.016 0.00021 4.2E-14 3.3E-36 2.1E-89
PA 1 0.073 0.041 0.0066 3.9E-08 7.7E-29 1.6E-80

MG64 1 0.067 0.098 0.13 0.13 0.12 0.047
MG128 1 0.14 0.19 0.25 0.26 0.23 0.16
LG64 1 0.07 0.038 0.0064 6.9E-09 2.1E-24 1.6E-80

LG128 1 0.15 0.048 0.0045 9.7E-10 5.2E-28 1.6E-80
64 GA 0.46 0.019 0.0025 2E-06 4E-15 4.1E-37 7.4E-91

CM 0.94 0.019 0.0035 5.2E-06 1.1E-14 5E-37 1.7E-90
PA 0.94 0.019 0.0064 0.00027 1.8E-12 1.3E-32 2.5E-86

MG64 0.94 0.017 0.026 0.033 0.034 0.029 0.0024
MG128 1 0.037 0.051 0.065 0.073 0.071 0.021
LG64 0.93 0.018 0.0098 0.00027 3.4E-12 2.4E-31 3.8E-83

LG128 1 0.041 0.012 2.6E-05 1.7E-11 1.3E-32 2.5E-85

Table E.4: For comparing the effect of collective adaptation with GA
the average maximal Collective Memory Clique Cover of Generation.



155

1 2 4 8 16 32 64

1 BASE 55.70 51.70 104.30 83.00 62.50 35.50 59.25
CMDU 56.90 21.85 18.85 21.85 56.85 247.55 3086.10
CMAP 32.85 32.50 34.50 23.75 27.25 816.10 2041.95

P64 57.05 57.35 57.10 58.20 66.10 82.10 157.35
P128 115.00 112.90 112.60 117.90 134.85 165.25 308.10
L64 56.65 55.05 55.55 59.10 66.25 81.65 132.95

L128 113.15 110.65 111.95 119.20 131.70 163.95 157.70
2 BASE 53.35 36.85 26.50 28.30 47.70 29.40 31.20

CMDU 17.40 17.30 19.20 21.95 37.20 75.70 160.45
CMAP 19.10 20.70 20.40 23.05 42.50 89.35 49.10

P64 60.25 58.45 57.30 58.60 65.45 80.50 125.75
P128 118.95 115.00 96.25 118.35 131.85 161.60 286.80
L64 58.00 56.70 57.80 58.35 64.50 77.30 97.75

L128 116.55 114.30 98.30 116.95 129.45 155.55 219.40
4 BASE 26.05 27.10 27.10 28.25 61.50 29.15 30.45

CMDU 58.80 19.95 19.90 40.50 80.85 62.80 73.20
CMAP 20.90 23.25 24.50 27.80 36.50 63.00 45.60

P64 61.35 59.60 59.15 61.55 69.55 88.10 160.65
P128 122.80 119.65 119.30 123.90 138.80 179.55 395.25
L64 60.30 58.90 58.25 60.30 65.20 72.75 81.85

L128 121.30 118.00 118.00 121.65 134.40 153.05 179.30
8 BASE 27.10 26.65 28.15 38.30 61.60 30.65 32.20

CMDU 62.90 60.15 66.70 66.10 70.40 33.60 29.80
CMAP 28.95 25.40 29.15 27.65 32.80 43.15 28.85

P64 68.05 61.65 64.30 67.80 77.95 72.80 133.80
P128 116.80 132.15 131.05 137.45 156.65 101.75 433.20
L64 66.30 60.65 63.05 64.25 67.75 72.00 80.30

L128 118.10 128.90 127.70 131.30 138.05 149.45 165.70
16 BASE 30.65 26.50 30.40 28.75 58.95 31.35 34.25

CMDU 33.65 23.70 28.00 32.05 69.35 56.30 55.35
CMAP 31.65 22.65 59.50 67.75 65.10 52.95 53.65

P64 84.60 59.45 63.90 68.10 78.60 101.65 219.10
P128 172.65 132.95 138.95 129.90 166.45 251.05 1042.00
L64 80.15 59.00 63.20 65.20 68.40 76.30 88.80

L128 163.15 129.00 135.40 113.80 147.85 117.90 189.10
32 BASE 35.05 26.20 27.25 28.45 63.15 32.65 39.15

CMDU 40.00 20.75 45.25 45.95 63.20 49.90 62.20
CMAP 88.25 38.40 41.30 44.60 45.70 30.60 42.65

P64 128.05 58.25 61.10 67.05 79.75 102.50 141.20
P128 261.70 125.35 130.90 147.30 173.40 223.70 466.80
L64 111.10 58.10 60.50 64.60 71.00 83.50 106.25

L128 226.80 124.45 130.00 140.40 153.70 177.05 226.65
64 BASE 39.55 26.10 27.50 28.95 31.85 37.80 48.50

CMDU 52.90 20.70 21.85 24.75 26.95 34.95 43.85
CMAP 98.15 35.85 40.25 43.90 46.85 59.60 82.10

P64 223.00 58.40 62.00 70.80 88.00 121.20 152.00
P128 410.80 120.40 129.40 143.45 184.15 247.45 183.20
L64 167.35 57.75 61.60 68.05 79.50 103.40 80.35

L128 345.05 119.60 128.35 142.45 166.75 213.90 153.25

Table E.5: For comparing the effect of collective adaptation with GA
Sum of Time Differences per Generation.



APPENDIX F

Data for Investigating GP and FC graphs

1 2 4 8 16 32 64

1 B64 1 2 4 5.9 8.1 9.1 9.8
B256 0.95 2 4 6.9 9.8 10 12
R64 1 2 4 5.6 7.9 8.4 9.1

R256 1 2 4 6.1 8.4 10 12
C64 1 2 4 6.3 7.8 8.1 8.8

C256 1 2 4 6.3 8.3 8.6 11
X64 1 2 4 6.4 9.3 13 18

X256 1 2 4 8 11 11 12
2 B64 1 2 3.5 4.8 5.6 5.5 5.6

B256 1 2 4 6.2 7.5 6.8 6.9
R64 1 2 3.9 5 5.3 4.8 5.3

R256 1 2 4 5 6.2 6.8 6.9
C64 1 2 4 4.9 5.2 5.1 5.5

C256 1 2 4 5.1 5.8 6 6.4
X64 1 2 4 5.9 9.5 12 20

X256 1 2 4 7.7 7.7 7.4 8.2
4 B64 1 2 3.3 3.9 4.2 4 4

B256 1 2 3.9 5 5.5 4.8 5.1
R64 1 2 3.4 3.9 4.2 4.1 4.2

R256 1 2 3.9 4.5 5 4.8 5.1
C64 1 2 3.4 4 4.4 4 4

C256 1 2 3.8 4.6 5.1 4.5 4.6
X64 1 2 3.9 6.3 9.3 12 18

X256 1 2 3.8 6.3 5.5 7.5 10
8 B64 1 2 2.8 3.5 3.8 3.1 3.2

B256 1 2 3.5 4.3 4.5 3.8 3.8
R64 1 2 3 3.3 3.4 3.3 3.3

R256 1 2 3.4 4 4.3 3.8 3.8
C64 1 2 3 3.3 3.7 3.5 3.1

C256 1 2 3.3 4 4.5 3.8 4
X64 1 2 3.8 5.4 7.5 9.6 11

X256 1 2 3.7 5.2 6.3 8.1 11
16 B64 1 2 2.4 3.2 2.9 2.6 2.9

B256 1 2 3.3 3.4 3.9 3.5 3.4
R64 1 2 2.5 2.9 2.9 2.8 2.8

R256 1 2 3.3 3.4 3.9 3.5 3.2
C64 1 2 2.4 2.9 2.6 2.7 2.6

C256 1 2 3.1 3.1 3.3 3.1 3.1
X64 1 1.6 3.6 4 5 6.2 6.6

X256 1 2 3.4 4.3 5.7 7.3 8.3
32 B64 1 2 2.1 2.4 2.5 2.5 2.5

B256 1 2 2.7 3.1 2.9 2.7 2.9
R64 1 2 2.3 2.4 2.2 2.4 2.4

R256 1 2 2.7 3.1 2.9 2.7 2.9
C64 1 2 2 2.4 2.1 2.3 2.5

C256 1 2 2.5 2.5 2.7 2.5 2.7
X64 1 1.5 3.3 3.5 3.6 3.8 4.1

X256 1 2 3.2 4.2 5 3.6 5
64 B64 1 2 1.8 2.2 2 2.3 2.1

B256 1 2 2.4 2.6 2.8 2.5 2.5
R64 1 2 2 2.1 2.1 2.1 2.2

Continued on next page

156



157

1 2 4 8 16 32 64
R256 1 2 2.2 2.2 2.6 2.5 2.3
C64 1 1.9 2 2.1 2.1 2.3 2.2

C256 1.1 2 2.4 2.5 2.5 2.5 2.3
X64 1 0.9 3 3.1 3.2 3.2 3.4

X256 1 1.7 3.1 3.4 3.6 3.8 4.3

Table F.1: For comparing the effect of collective adaptation on the GP
the average maximal Generational Max Clique of Generation.



158

1 2 4 8 16 32 64

1 B64 1 1 1 0.033 3E-08 2.1E-28 4.4E-82
B256 0.95 1 1 0.23 1.6E-06 2.5E-25 1.8E-80
R64 1 1 1 0.041 5.8E-09 9.4E-30 1.5E-80

R256 1 1 1 0.054 2.5E-08 2.5E-25 1.8E-80
C64 1 1 1 0.15 1.2E-07 5.6E-31 2.3E-82

C256 1 1 1 0.083 2.5E-08 0.037 8.3E-78
X64 1 1 1 0.14 0.00022 2.9E-12 6.5E-57

X256 1 1 1 1 0.00021 3.9E-27 8.9E-80
2 B64 1 0.93 0.42 0.002 4.6E-10 5.3E-33 6E-87

B256 1 1 0.79 0.07 1.7E-09 5.4E-32 4.4E-86
R64 1 0.97 0.9 0.013 3.4E-11 8.9E-34 1.8E-86

R256 1 1 0.88 0.011 1.8E-10 5.4E-32 4.4E-86
C64 1 0.95 0.84 0.017 3.3E-11 1.6E-33 1.6E-86

C256 1 1 0.89 0.013 1E-10 4.5E-32 7.5E-85
X64 1 1 0.91 0.08 0.05 4.6E-19 1.6E-55

X256 1 1 1 0.46 4.8E-08 7.6E-32 1.9E-82
4 B64 1 0.4 0.15 0.00025 8.2E-13 6.9E-35 1.4E-88

B256 1 0.65 4E-90 8.1E-89 1.6E-88 1.5E-34 9.1E-88
R64 1 0.7 0.46 0.0021 6.3E-12 2.1E-34 5.9E-88

R256 1 0.99 0.6 0.0028 4.4E-11 1.5E-34 9.1E-88
C64 1 0.51 0.41 0.0015 1.2E-11 2.6E-34 4.7E-88

C256 1 1 0.57 0.0033 0.037 3.3E-34 5.7E-88
X64 1 0.78 0.45 0.081 0.0017 1.3E-15 7.9E-56

X256 1 0.99 0.54 0.049 4.5E-10 5.8E-21 1.5E-66
8 B64 1 0.17 0.043 7.9E-05 2.7E-13 5.3E-36 1.5E-89

B256 1 0.27 0.087 0.00019 3.5E-12 1.1E-35 3.5E-89
R64 1 0.23 0.13 0.00039 1.6E-12 5.3E-35 1.2E-88

R256 1 0.61 0.27 0.0017 4.4E-12 8.2E-35 1.9E-88
C64 1 0.26 0.13 0.00038 3.2E-12 4.4E-35 1E-88

C256 1 0.6 0.27 0.00079 0.00035 7.7E-35 0.037
X64 1 0.34 0.16 0.027 2.8E-05 2.7E-17 1.5E-66

X256 1 0.61 0.22 0.02 2.6E-05 3.7E-13 1.1E-70
16 B64 1 0.069 0.013 2.7E-05 4.1E-14 1.2E-36 3.9E-90

B256 1 0.13 0.037 3.5E-05 2.4E-13 4.2E-36 7.3E-90
R64 1 0.091 0.043 0.00011 3.4E-13 1.1E-35 2.3E-89

R256 1 0.13 0.037 3.5E-05 2.4E-13 4.2E-36 7E-89
C64 1 0.094 0.041 0.00016 1.8E-13 1.1E-35 2.5E-89

C256 1 0.22 0.086 0.00023 9.1E-13 0.00042 6.9E-89
X64 1 0.13 0.066 0.00018 6E-09 4.2E-24 2.1E-81

X256 1 0.28 0.071 0.0036 1.9E-06 1.1E-27 3E-75
32 B64 1 0.034 0.0039 4.7E-06 9.1E-15 4.9E-37 1.2E-90

B256 1 0.052 0.01 1.7E-05 2.8E-14 7.8E-37 2E-90
R64 1 0.039 0.015 1.8E-05 3.5E-14 3.1E-36 6.7E-90

R256 1 0.052 0.01 1.7E-05 2.8E-14 7.8E-37 2E-90
C64 1 0.037 0.013 2E-05 3.4E-14 2.4E-36 7.2E-90

C256 1 0.077 0.029 3.5E-05 1.4E-13 9.1E-36 1.9E-89
X64 1 0.047 0.023 5.5E-05 7.1E-14 1.4E-35 2.7E-89

X256 1 0.087 0.027 0.0018 3E-09 2.2E-32 5.9E-85
64 B64 1 0.016 0.0012 1.4E-06 1.7E-15 1.8E-37 3.3E-91

B256 1 0.02 0.003 2.8E-06 6.6E-15 3.3E-37 5.2E-91
R64 1 0.017 0.0046 4.4E-06 8.3E-15 8.3E-37 1.5E-90

R256 1 0.028 0.0096 1.1E-05 3.3E-14 2.5E-36 6.1E-90
C64 1 0.017 0.0038 4E-06 8.4E-15 6.7E-37 1.6E-90

C256 1 0.028 0.0087 1.5E-05 3.6E-14 2.2E-36 5.2E-90
X64 1 0.011 0.0077 1.1E-05 2.5E-14 1.8E-36 3.6E-90

X256 1 0.029 0.01 1.2E-05 1E-13 9.9E-36 2.3E-86

Table F.2: For comparing the effect of collective adaptation on the GP
the average maximal Max Clique Cover of Generation.



159

1 2 4 8 16 32 64

1 B64 1 2 4 5.9 8.1 9.1 9.8
B256 0.95 2 4 6.9 9.8 10 12
R64 1 2 4 5.6 7.9 8.4 9.1

R256 1 2 4 6.1 8.4 10 12
C64 1 2 4 8 16 31 55

C256 1 2 4 7.4 8.7 11 16
X64 1 2 4 6.4 9.3 13 18

X256 1 2 4 8 11 11 12
2 B64 1 2 3.5 4.8 5.6 5.5 5.6

B256 1 2 4 6.2 7.5 6.8 6.9
R64 1 2 3.9 5 5.3 4.8 5.3

R256 1 2 4 5 6.2 6.8 6.9
C64 1 2 4 8 16 30 52

C256 1 2 4 7.1 10 17 27
X64 1 2 4 5.9 9.6 13 22

X256 1 2 4 7.7 7.7 7.4 8.2
4 B64 1 2 3.3 3.9 4.2 4 4

B256 1 2 3.9 5 5.5 4.8 5.1
R64 1 2 3.4 3.9 4.2 4.1 4.2

R256 1 2 3.9 4.5 5 4.8 5.1
C64 1 2 4 8 15 27 39

C256 1 2 4 7.4 11 21 32
X64 1 2 3.9 6.3 9.3 12 19

X256 1 2 3.8 6.3 5.5 7.5 10
8 B64 1 2 2.8 3.5 3.8 3.1 3.2

B256 1 2 3.5 4.3 4.5 3.8 3.8
R64 1 2 3 3.3 3.4 3.3 3.3

R256 1 2 3.4 4 4.3 3.8 3.8
C64 1 2 4 7.7 13 21 24

C256 1 2 4 6.3 9.9 20 21
X64 1 2 3.8 5.5 7.5 9.7 11

X256 1 2 3.7 5.2 6.3 8.1 11
16 B64 1 2 2.4 3.2 2.9 2.6 2.9

B256 1 2 3.3 3.4 3.9 3.5 3.4
R64 1 2 2.5 2.9 2.9 2.8 2.8

R256 1 2 3.3 3.4 3.9 3.5 3.2
C64 1 2 4 7.1 10 13 15

C256 1 2 3.9 6.2 7.7 12 13
X64 1 1.6 3.6 4 5.1 6.2 6.6

X256 1 2 3.4 4.3 5.7 7.3 8.4
32 B64 1 2 2.1 2.4 2.5 2.5 2.5

B256 1 2 2.7 3.1 2.9 2.7 2.9
R64 1 2 2.3 2.4 2.2 2.4 2.4

R256 1 2 2.7 3.1 2.9 2.7 2.9
C64 1 2 3.8 5.8 7.3 7.7 8.8

C256 1 2 3.8 5.7 6.7 7.9 8.1
X64 1 1.5 3.3 3.5 3.6 3.8 4.1

X256 1 2 3.2 4.2 5 3.6 5
64 B64 1 2 1.8 2.2 2 2.3 2.1

B256 1 2 2.4 2.6 2.8 2.5 2.5
R64 1 2 2 2.1 2.1 2.1 2.2

R256 1 2 2.2 2.2 2.6 2.5 2.3
C64 1 1.9 3.3 4.1 5 4.5 5.3

C256 1.1 2 3.4 4.1 4.8 5.3 5.7
X64 1 0.9 3 3.1 3.2 3.2 3.4

X256 1 1.7 3.1 3.4 3.6 3.8 4.3

Table F.3: For comparing the effect of collective adaptation on the GP
the average maximal Collective Memory Max Clique of Generation.



160

1 2 4 8 16 32 64

1 B64 1 1 1 0.033 3E-08 2.1E-28 4.4E-82
B256 0.95 1 1 0.23 1.6E-06 2.5E-25 1.8E-80
R64 1 1 1 0.041 5.8E-09 9.4E-30 1.5E-80

R256 1 1 1 0.054 2.5E-08 2.5E-25 1.8E-80
C64 1 1 1 1 0.9 0.6 1.3E-05

C256 1 1 1 0.61 1.5E-06 0.05 6.8E-54
X64 1 1 1 0.22 0.00023 2.9E-12 6.5E-57

X256 1 1 1 1 0.00021 4.4E-27 5.9E-79
2 B64 1 0.93 0.42 0.002 4.6E-10 5.3E-33 6E-87

B256 1 1 0.79 0.07 1.7E-09 5.4E-32 4.4E-86
R64 1 0.97 0.9 0.013 3.4E-11 8.9E-34 1.8E-86

R256 1 1 0.88 0.011 1.8E-10 5.4E-32 4.4E-86
C64 1 1 0.99 0.52 0.5 0.1 1E-07

C256 1 1 1 0.27 0.0017 1.5E-12 7.1E-42
X64 1 1 1 0.091 0.05 6.9E-19 2.4E-28

X256 1 1 1 0.47 5E-08 2.1E-31 1.4E-81
4 B64 1 0.4 0.15 0.00025 8.2E-13 6.9E-35 1.4E-88

B256 1 0.65 4E-90 8.1E-89 1.6E-88 1.5E-34 9.1E-88
R64 1 0.7 0.46 0.0021 6.3E-12 2.1E-34 5.9E-88

R256 1 0.99 0.6 0.0028 4.4E-11 1.5E-34 9.1E-88
C64 1 0.94 0.69 0.26 0.11 0.0004 1.2E-35

C256 1 1 0.84 0.17 0.05 4.2E-07 1.2E-35
X64 1 0.93 0.62 0.085 0.0017 3E-14 2.1E-45

X256 1 1 0.86 0.066 7.9E-10 6.1E-21 4.7E-66
8 B64 1 0.17 0.043 7.9E-05 2.7E-13 5.3E-36 1.5E-89

B256 1 0.27 0.087 0.00019 3.5E-12 1.1E-35 3.5E-89
R64 1 0.23 0.13 0.00039 1.6E-12 5.3E-35 1.2E-88

R256 1 0.61 0.27 0.0017 4.4E-12 8.2E-35 1.9E-88
C64 1 0.63 0.29 0.099 0.0081 1.9E-11 1.4E-60

C256 1 0.96 0.48 0.05 0.008 9.6E-12 0.05
X64 1 0.44 0.25 0.028 2.8E-05 2.8E-17 1.1E-63

X256 1 0.84 0.47 0.021 2.6E-05 3.7E-13 1.4E-69
16 B64 1 0.069 0.013 2.7E-05 4.1E-14 1.2E-36 3.9E-90

B256 1 0.13 0.037 3.5E-05 2.4E-13 4.2E-36 7.3E-90
R64 1 0.091 0.043 0.00011 3.4E-13 1.1E-35 2.3E-89

R256 1 0.13 0.037 3.5E-05 2.4E-13 4.2E-36 7E-89
C64 1 0.24 0.098 0.029 2.9E-05 8.9E-25 2.8E-71

C256 1 0.57 0.19 0.016 1.1E-06 0.05 1.3E-72
X64 1 0.14 0.083 0.00027 6E-09 4.2E-24 2.1E-81

X256 1 0.45 0.15 0.0038 2E-06 1.1E-27 3E-75
32 B64 1 0.034 0.0039 4.7E-06 9.1E-15 4.9E-37 1.2E-90

B256 1 0.052 0.01 1.7E-05 2.8E-14 7.8E-37 2E-90
R64 1 0.039 0.015 1.8E-05 3.5E-14 3.1E-36 6.7E-90

R256 1 0.052 0.01 1.7E-05 2.8E-14 7.8E-37 2E-90
C64 1 0.073 0.039 0.0028 9.7E-09 3.4E-30 1.1E-82

C256 1 0.21 0.1 0.0039 5.1E-10 3.4E-31 6.6E-84
X64 1 0.048 0.027 7.2E-05 1.4E-13 2.1E-35 5.5E-89

X256 1 0.13 0.045 0.0019 3.3E-09 2.2E-32 5.9E-85
64 B64 1 0.016 0.0012 1.4E-06 1.7E-15 1.8E-37 3.3E-91

B256 1 0.02 0.003 2.8E-06 6.6E-15 3.3E-37 5.2E-91
R64 1 0.017 0.0046 4.4E-06 8.3E-15 8.3E-37 1.5E-90

R256 1 0.028 0.0096 1.1E-05 3.3E-14 2.5E-36 6.1E-90
C64 1 0.027 0.012 4.4E-05 3.8E-12 1.4E-35 3.1E-87

C256 1 0.062 0.017 0.00016 1.4E-10 2.8E-34 5.4E-87
X64 1 0.011 0.0081 1.4E-05 3.6E-14 3.7E-36 6.6E-90

X256 1 0.034 0.014 2.2E-05 1.3E-13 1.4E-35 2.5E-86

Table F.4: For comparing the effect of collective adaptation on the GP
the average maximal Collective Memory Clique Cover of Generation.



161

1 2 4 8 16 32 64

1 B64 344.45 241.80 236.95 246.30 362.15 332.30 188.20
B256 754.75 490.35 685.20 1436.30 2136.75 2091.65 1699.00
R64 81.55 87.10 156.15 483.30 451.30 476.90 498.10

R256 350.65 358.50 644.55 2193.90 2068.40 1325.60 781.00
C64 88.20 95.40 169.85 454.25 521.60 521.25 521.00

C256 345.85 352.15 650.75 1928.95 2131.20 2578.80 1601.45
X64 68.50 84.10 162.30 454.55 458.90 517.50 582.25

X256 305.15 373.20 768.80 847.10 1298.00 1457.25 1036.65
2 B64 270.40 238.55 171.20 190.50 218.30 212.20 199.95

B256 523.70 315.75 505.30 892.05 970.75 1282.65 1286.55
R64 77.55 93.20 213.80 436.85 491.45 574.20 552.75

R256 308.85 374.95 953.30 2049.30 2005.10 839.50 1014.20
C64 80.70 94.50 189.60 469.70 515.05 500.15 486.30

C256 316.75 369.05 779.70 2064.60 2299.55 2415.85 2476.35
X64 67.40 94.30 195.80 424.50 473.10 454.50 488.65

X256 369.40 436.00 413.35 771.00 905.45 919.75 1011.95
4 B64 252.65 131.00 138.65 155.65 213.15 227.80 177.60

B256 992.10 559.70 985.15 737.05 881.50 929.55 628.95
R64 86.15 90.95 257.05 439.85 423.80 479.40 471.90

R256 346.45 439.80 1438.95 1887.40 1833.10 665.65 630.40
C64 85.40 85.55 238.05 440.45 418.15 452.15 507.35

C256 334.50 449.25 1399.60 1924.70 1641.00 2097.05 2263.60
X64 82.75 93.30 234.20 411.30 446.35 408.50 433.40

X256 716.90 420.95 560.95 680.70 762.70 722.35 795.80
8 B64 244.30 128.95 189.35 234.90 189.60 180.75 128.10

B256 984.40 789.30 693.15 1116.90 966.95 612.85 948.10
R64 63.90 85.70 175.30 342.90 440.05 390.50 229.55

R256 253.75 438.05 1295.90 1584.15 1027.15 1103.60 1057.10
C64 93.15 89.30 166.00 353.80 232.20 388.85 206.40

C256 254.80 440.35 1223.35 1871.20 1456.75 2197.75 1340.25
X64 62.60 88.20 187.60 359.30 214.05 396.15 241.90

X256 690.70 546.30 541.45 628.65 662.50 697.00 699.25
16 B64 308.75 116.50 152.80 114.60 171.75 148.85 191.55

B256 1669.65 724.45 804.30 562.75 1005.75 844.55 1006.80
R64 232.20 85.05 129.95 225.65 269.40 281.20 300.15

R256 1395.30 493.90 592.30 602.10 733.30 581.90 2002.50
C64 237.25 83.10 128.75 227.65 274.35 276.15 290.70

C256 919.70 392.60 961.95 1687.85 1869.60 1665.20 2066.35
X64 213.15 83.90 144.00 236.10 292.10 288.75 292.75

X256 985.25 567.40 583.60 413.05 612.40 653.35 715.50
32 B64 526.45 128.15 151.40 141.15 100.25 179.95 140.35

B256 2905.00 627.10 695.65 817.65 803.95 888.85 705.05
R64 495.80 82.50 140.45 138.95 173.15 191.60 197.75

R256 1974.40 637.65 695.55 562.40 805.95 624.00 705.75
C64 496.85 86.20 107.70 160.00 182.40 176.80 222.00

C256 1895.80 357.05 845.20 1235.65 1487.35 1682.50 1823.00
X64 456.10 80.75 111.15 154.80 188.35 212.00 252.85

X256 1641.60 454.80 548.55 612.15 624.65 622.30 785.20
64 B64 780.20 125.00 151.95 114.65 117.50 121.40 129.25

B256 4797.80 825.55 705.85 705.95 961.80 840.15 1012.10
R64 913.30 90.95 131.10 113.00 120.20 147.05 110.35

R256 3073.05 344.70 523.80 840.85 988.75 889.65 1317.85
C64 910.45 107.30 106.50 113.80 127.60 151.80 109.50

C256 3212.60 328.10 459.65 656.30 1064.55 965.70 1287.50
X64 847.75 78.90 104.30 125.90 153.90 167.80 117.25

X256 2690.75 416.15 570.25 586.50 644.85 762.80 537.40

Table F.5: For comparing the effect of collective adaptation on the GP
Sum of Time Differences per Generation.



APPENDIX G

Phenotypical Building Blocks

G.1 Introduction

The schema theorem and the building block hypothesis [Holland, 1975; Goldberg,

1989] provide intuition into the mechanics of the genetic algorithm (GA). They

are sufficient in the same way the laws of Newtonian physics are for describing

the physical world; on the surface, they prepare you for everyday life. We all can

apply velocity, acceleration, equal and opposite force, and momentum to drive a

car. But when we start to study the realm of the atom, we must resort to the laws

of quantum physics. We can apply our Newtonian laws to get a “feel” for how

things work, but we still need to adopt a counter-intuitive manner of thinking.

While problems with the schema theorem have been published [Altenberg,

1994; Mitchell et al., 1992], it still provides a starting point for studying the the-

oretical workings of the GA. We do not really have that luxury when we examine

the genetic programming (GP) paradigm [Koza, 1992]. Even though it is an off–

shoot of GAs and it also borrows the concepts of selection, recombination, and

mutation from the natural sciences, we are at a loss to provide a schema defini-

tion for the GP. O’Reilly and Oppacher argue that a GP Schema Theorem is not

forthcoming [O’Reilly, 1995]. We do observe the formation of what we consider

to be building blocks, e.g., highly fit subtrees of small defining length, but such

162



163

findings are empirical. Also, unlike GA building blocks, instances of a subtree

may not be highly fit.

Royal Road functions are used by GA researchers to both investigate the for-

mation of building blocks and test GAs against other paradigms [Mitchell et al.,

1992]. The GA researcher can utilize a Royal Road function to carefully craft a

fitness landscape, which will allow for controlled experiments to test properties of

the GA. Again, such an undertaking has not been done within the GP community.

Some work has been done on presenting standard test-beds [Tackett and Carmi,

1994] and Punch et al. have even proposed a Royal Tree function [Punch et al.,

1996], which is presented more as a benchmark than as a tool for investigation of

GP fitness landscapes.

My objective is to reconcile the conclusions drawn by O’Reilly and Oppacher

against the empirical evidence for building blocks. I do so by showing how their

GP schema fails to account for phenotypical building blocks. I then provide a

brief survey of phenotypical building blocks in previous GP experiments. Finally

I discuss additional characteristics I feel necessary for a GP schema to contain

and illustrate these characteristics in a Royal Tree domain.

G.2 Building Blocks and GP

The “basic” theory of GP is borrowed from that of GA [Koza, 1992]. Due to the

difficulties in detecting building blocks in GP chromosomes1, research is ongoing

1See Section 3.2 for an introduction to building blocks.



164

into formally connecting the theory as to why GP works with that of why GAs

work [O’Reilly, 1995; Rosca, 1997; Poli and Langdon, 1997b]. The canonical

GP chromosome representation is a parse tree (S–expression). The fixed versus

variable genotype representation has proven problematic in formulating a schema

theorem for GP. O’Reilly and Oppacher carefully crafted a GP Schema Theorem,

GPST, based on the expression of subtrees in the genotype of the chromosome.

They just as carefully tore the resultant theory apart and questioned the existence

of building blocks in GP systems [O’Reilly, 1995; O’Reilly and Oppacher, 1995b].

Their conclusions were:

In this chapter we carefully formulated a Schema Theorem for GP
using a schema definition that accounts for the variable length and
the non–homologous nature of GP’s representation. In a manner sim-
ilar to early GA research, we used interpretations of our GP Schema
Theorem to obtain a GP Building Block definition and to state a
“classical” Building Block Hypothesis (BBH): that GP searches by hi-
erarchically combining building blocks. We report that this approach
is not convincing for several reasons: it is difficult to find support
for the promotion and combination of building blocks solely by rigor-
ous interpretation of a GP Schema Theorem; even if there were such
support for a BBH, it is empirically questionable whether building
blocks always exist because partial solutions of consistently above av-
erage fitness and resilience to disruption are not always assured; also,
a BBH constitutes a narrow and imprecise account of GP search be-
havior. [O’Reilly, 1995] (pages 136–137)

Empirically however, the concept of introns have been discussed in GP lit-

erature for quite some time (see for example [Tackett, 1993; Angeline, 1994]).

Introns are conjectured to guard against destructive crossover in GA chromo-

somes [Levenick, 1991]. Angeline conjectures the same role is played by introns



165

in GP chromosomes [Angeline, 1994], and Nordin et al. have shown this exper-

imentally [Nordin, 1996]. Tackett however takes a slightly different stance: he

believes that small subtrees which appear frequently in S–expressions and are es-

pecially expressed in the intron, are GP’s building blocks. These subtrees are

prevalent due to their contribution to the fitness of the chromosomes in which

they appear [Tackett, 1993]. I adopt this frequent expression of subtrees in the

chromosome as our working definition of building blocks in a GP system2.

Altenberg applies Price’s Theorem to account for the multiple appearance of

a subtree within a chromosome [Altenberg, 1994]. He believes that the schema

theorem can not account for the proliferation of copies of subtrees and introduces

a “constructional fitness” to account for such proliferation. The key to under-

standing constructional fitness is in his redefinition of a building block; a building

block is not necessarily highly fit; instead it is a block which has a higher proba-

bility of increasing fitness in a child chromosome. Thus a block is not a building

block because of its contribution to the current chromosome, but rather because

of its potential contribution to descendants of the chromosome. The distinction is

subtle, but critical for understanding the characteristics of building blocks in GP

chromosomes.

I was able to experimentally demonstrate Altenberg’s constructional fitness

by stripping all non-coding segments3 out of the chromosome and creating a new

2The GPST of O’Reilly and Oppacher also accounts for the multiple appearance of building
blocks in the chromosome.

3These are segments which do not contribute either positively or negatively to the evaluation
of the chromosome.



166

chromosome which contained duplicates of the coding segment [Haynes, 1996]. By

forcing the multiple appearance of the coding segment, I am able to effect multiple

appearances of the building blocks. The duplicates were non–coding in that they

had no direct influence on the fitness of the repaired chromosome. However, they

had a significant influence on the fitness of subsequent generations. Empirically,

I was able to show that building blocks could exist by assuring the existence of

partial solutions of consistently above average fitness and resilience to disruption.

I believe that there is a contradiction between O’Reilly and Oppacher’s theo-

retical model of GPST4 and the experimental findings on the multiple appearances

of subtrees in the chromosome (see for example [Tackett, 1993; Angeline, 1994]). I

do not dispute O’Reilly and Oppacher’s findings, but rather the assumptions that

went into their model. Their formulation of building blocks is based on the chro-

mosome’s genotype. As an example, consider the GP-schema H = {((+ 5 6), 2)}5;

it has three instances in Figure G.1: (AC, AD, CD). The subtree at B does not

help form three more instances since the order of the arguments do not match.

If we consider only the chromosome’s genotype this general schema definition is

satisfactory.

However, if we consider the chromosome’s phenotype, this schema definition

fails. In the context of the parent nodes, e.g., the nodes labeled RCL and RCR,

the contributions of the subtrees at the nodes labeled A, C, and D can be vastly

different. For example, let the function at node RCR be addition. Are the subtrees

4Which is actually grounded in experimental research [O’Reilly, 1995].
5This reads as schema for which the subtree (+ 5 6) is expressed twice. The reader is referred

to [O’Reilly, 1995] for the notation.



167

+

6 6

+

5 5

+

6 5

+

65

A B C D

R

RCL RCR

Figure G.1: The three instances of the GP-schema H = {((+ 5 6), 2)} in
an S–expression.

at C and D necessary to derive the constant 11? Or are they backups of the subtree

at node A, which is necessary in the context of node RCL? If the function at node

RCL is any of the set F1 = {addition, division, multiplication, subtraction},

the number returned by RCL is not dependent on the ordering in node B6.

Even with the simple function set F1, I have illustrated that a schema defi-

nition based solely on the chromosome’s genotype is inadequate. Why then do

O’Reilly and Oppacher focus only on the genotype and not the phenotype of the

chromosome? They are building their GPST from the schema definitions em-

ployed in GAs, and in GAs there is a close relationship between the genotype

and phenotype structure of a chromosome. Thus the schemata of GAs are usually

represented at the genotype level and building blocks are relatively easy to detect.

I argue that with the GP, schemata are at the phenotype or semantical level and

the building blocks are difficult to represent, detect, and capture.

Poli and Langdon have recently proposed a different schema theorem based on

their concept of one–point crossover [Poli and Langdon, 1997b; Poli and Langdon,

6Andre and Teller provide a more detailed discussion of the potential interactions of nodes
in the chromosome [Andre and Teller, 1996].



168

1997a]. Their schema is also not commutative, i.e., it does not allow for the

different ways to embed a phenotypical subtree in the genotype7. For example,

(+ 5 6) and (+ 6 5) are not equivalent. They define a schema as a tree which

is built from the union of both the function and terminal sets with the wild card

“=”, which represents a single element of the chromosome. While their schema

theorem, and its representational power, is more complete than that of O’Reilly

and Oppacher, it still fails to completely capture phenotypical interactions of

building blocks.

Consider the problem of evolving a solution to the XOR binary function with

the function set F2 = {AND, OR, NOR, NAND} and the terminal set T2 =

{A, B}8. Furthermore, without a loss of generality, let us restrict the maximum

depth of trees to be 3. A possible solution is (OR (AND (NOR A A) B) (AND

(NOR B B) A)). Notice that the schema (NOR = =) is not a building block

given the current representation. There are four possible instantiations: (NOR

A A), (NOR A B), (NOR B A), and (NOR B B). Two of the four are building

blocks in the domain, but the other two are unfit.

We could extend the schema of Poli and Langdon by allowing for generic wild

cards which become instantiated when expressed in a schema. For example, we

could have the wild card set W = {=, α, β}. Now the schema (NOR α α) is

a building block since it is a subtree in which its first argument is the same as

7The commutative property is dependent on the properties of each function in the function
set F .

8Poli and Langdon provide a detailed theoretical and experimental analysis of this domain
and alphabet for trees of a maximum depth of 2 and also an experimental analysis of trees of
depth 3 [Poli and Langdon, 1997a].



169

its second argument. Another observation is that (NOR α α) is a genotypical

representation of the phenotypical building block (NOT =). With our depth

restrictions, there are two possible genotypical representations of this phenotypical

building block: (NOR α α) and (NAND α α).

G.3 Royal Roads

Royal Road functions represent fitness landscapes which facilitate the testing and

understanding of how the GA works [Mitchell et al., 1992]. By explicitly designing

the fitness function to encourage building blocks, the performance of the GA can

be tested. Consider the 1s problem, i.e., with a fixed binary string; the global

optimum is having a 1 in each bit. A simple fitness function for this domain is to

count the number of 1s expressed in the string. However, we would further like

the 1s to be adjacent. Both s1 = *1**1*** and s2 = *11***** are schemata of

equal order which describe schema with at least two 1s present. However, s2 is

better because it is less susceptible to the destructive effects of crossover. In this

domain, desirable building blocks maximize the number of adjacent 1s.

Mitchell et al. present the function R1,

R1(x) =
8

∑

i=1

δi(x)o(si),where δi(x) =



















1 if x ∈ si

0 otherwise,

where x is a bit string, and o(si) is the order of the schema si. In Figure G.2,

the goal is detect the 8 schemata and use them to build up the solution. By



170

selecting these building blocks, they are providing a detailed algorithm for solving

the 1s problem. Their choice of building blocks dictates the learning curve for this

problem. In R2, Figure G.3, there are also the four schemata which correspond to

16 consecutive bits starting on 16 bit boundaries and the learning is drastically

different [Mitchell et al., 1992].

s1= 11111111********************************************************

s2= ********11111111************************************************

s3= ****************11111111****************************************

s4= ************************11111111********************************

s5= ********************************11111111************************

s6= ****************************************11111111****************

s7= ************************************************11111111********

s8= ********************************************************11111111

Figure G.2: A set of schemata describing an instance of the Royal Road
function R1.

With the function R2, replicated in Figure G.3, the goal is to detect and use

the lower order schemata to detect the higher order schemata. For example, if

crossover causes s1 and s2 to be joined, then we also have s9. The desired effect

is to force the application of the Schemata Theorem. The actual results indicated

that the building blocks were not being exploited [Mitchell et al., 1992].

A tempting assumption to make is that the 1s problem is purely genotypical.

In Mitchell et al.’s description of R1, the problem’s domain is explicitly omitted.

The intent is to simply describe a fitness landscape. However, I argue that the

building blocks, si, are purely phenotypical in nature.

Let us consider an example for which we know more than the genotype: the



171

s1= 11111111********************************************************

s2= ********11111111************************************************

s3= ****************11111111****************************************

s4= ************************11111111********************************

s5= ********************************11111111************************

s6= ****************************************11111111****************

s7= ************************************************11111111********

s8= ********************************************************11111111

s9= 1111111111111111************************************************

s10= ****************1111111111111111********************************

s11= ********************************1111111111111111****************

s12= ************************************************1111111111111111

s13= 11111111111111111111111111111111********************************

s14= ********************************11111111111111111111111111111111

s15= 1111111111111111111111111111111111111111111111111111111111111111

Figure G.3: A set of schemata describing an instance of the Royal Road
function R2.

XOR domain with the alphabet given by F2 and T2. In the last section, we did

not discuss the fitness evaluation of a chromosome in this domain. Intuitively,

we have four test cases, given by the truth table formed by the input pair AB

and the output A⊕B. The fitness evaluation could simply be the number of test

cases that a chromosome correctly evaluated. Possible building blocks could be

chromosomes which correctly identify the input pairs {A =} and {= B}.

We can also construct a Royal Road function with the phenotypical building

blocks: (1) (NOT =) and (2) (AND = (NOT =)). Since we are in the pheno-

typical space, and all functions are commutative, we allow (AND = (NOT =))

to also describe (AND (NOT =) =). These two phenotypical building blocks

have the following genotypical building blocks:

1. (NAND α α)

2. (NOR α α)



172

3. (AND (NAND α α) =)

4. (AND = (NAND α α))

5. (AND (NOR α α) =)

6. (AND = (NOR α α))

We can enumerate all schemata containing these building blocks and assign rele-

vant fitness points to each schema instantiation.

G.4 Phenotypical Building Blocks

My claim is that schemata actually occur in both the chromosome’s genotype and

phenotype. With the GA, the fixed length nature of the chromosome ensures the

close relationship of genotype and phenotype. Building blocks in the phenotype

are usually found in systems which have multi-level fitness functions; they are

segments of the chromosome which solve the subtasks delimited by the multi-

level fitness functions.

Multi–level fitness functions are typically considered in GP systems which

emulate single or multi-agent systems [Andre, 1995; Haynes et al., 1995b; Koza,

1992; Spector, 1996], although there are several non-agent systems that make use

of multi–level fitness functions [Haynes, 1996; Punch et al., 1996; Soule et al.,

1996]. Problem domains may not be explicitly designed to reward for different

actions [Andre, 1995; Koza, 1992], but still encourage the development of building

blocks to solve subtasks in the evaluation. For example, the Pac–Man game



173

rewards for an agent eating a pill and then the monsters while the pill is in

effect [Koza, 1992]. In his encoding of the problem, Koza did not devise the

problem so that this sub-task would be solved. It arose naturally from the way

the video arcade game was designed. Likewise, this is the case with Spector’s

research [Spector, 1996] into the Wumpus World presented originally by Russell

and Norvig [Russell and Norvig, 1995].

In other problem domains, the designers did explicitly define multi-level fitness

functions to encourage the solving of sub-tasks, which when summed together

would solve the global task [Haynes et al., 1995b; Haynes, 1996; Punch et al., 1996;

Soule et al., 1996]. For example, the predator/prey implementation by Haynes et

al. first encourages predators to move closer to the prey, then to each take up and

stay at a capture position, and finally to all stay at the capture position [Haynes

et al., 1995b]. The simple evaluation of always moving closer would also lead to

capture. With the multi–level function they use, they have created a Royal Road

function. The evaluation of a subtree is context dependent; i.e., its position in the

chromosome readily changes its evaluation. However, no study has been done on

the shape of the fitness landscape.

Three other functions which exhibit Royal Road characteristics have been pro-

posed [Haynes, 1996; Punch et al., 1996; Soule et al., 1996]. The Royal Tree func-

tion proposed by Punch et al. is strictly based on the chromosome’s genotype.

While they utilize partial credit to implement the Royal Tree functionality, their

function and terminal set are in effect the shape of the chromosome. As such,



174

their building blocks do not depend on context.

Both Haynes and Soule et al. consider variants of detecting cliques in a graph:

Haynes detects all cliques in a graph and Soule et al. look for the maximum clique.

Haynes utilized strong typing [Montana, 1995] and type inheritance [Haynes et

al., 1996b] to generate a collection of candidate cliques in a graph. He discussed

how the valid candidate cliques are actually building blocks and shows how, by

duplicating the candidate cliques in the chromosome, learning can be improved.

Soule et al. do not utilize strong typing, instead they use an union operation to

join nodes together into one candidate maximum clique. They also provide an

overview of why the arguments provided by O’Reilly and Oppacher fail for this

domain and show the representational problems that do not make clique detection

a good candidate for a GA Royal Road function.

G.5 A GP Royal Road Function

In this section I illustrate how the definition of Royal Road functions must be

changed to accommodate GP chromosomes. Soule et al. have shown that strong

typing is not necessary; i.e., a plain GP system can not only detect cliques but

also express building blocks inside the chromosome. However the identification of

building blocks inside the chromosome is facilitated in our system by the combi-

nation of strong typing and the problem formulation of finding all the cliques.

Each candidate clique is a phenotypical building block. For example, the

subtrees (IntCon 4 5) and (IntCon 5 4) are both genotypical representations of



175

the candidate clique C1 = {4, 5}. This candidate clique can be utilized to form

both of the maximal cliques Ca = {1, 4, 5} and Ca = {4, 5, 8}. While Mitchell et

al. needed to explicitly design their fitness function to reward for the expressing

of the schemata si, with the clique detector fitness function the reward for the

expression of the building block is implicit. To change the fitness landscape, I

would either have to change the edges between the nodes or add additional nodes

to the graph.

I employ Altenberg’s definition of a building block [Altenberg, 1994] for the

expression of candidate cliques in the chromosomes. For example, consider the

third candidate clique in Figure 3.3. Since it does not directly contribute to the

fitness of the chromosome, it does not fit the traditional definition of a building

block. However, this subtree can potentially increase the fitness of a child if

crossover either cuts it away from the subtree denoted by candidate clique #2 or

splices it together with either of nodes 3 or 8.

While Mitchell et al. believe that one does not have to have every partial step

included in the fitness function, I have observed that rewarding for increasing the

size of candidate clique is effective in finding the optimal solution. The fitness

landscape can be crafted by selecting the graph to be considered. For example,

a graph with eight vertices, which are all connected, could correspond directly to

the R1 function. The fitness function could only reward the chromosome if either

one of the eight candidate cliques of size seven is discovered.

The combination of the low cardinality candidate cliques into higher cardinal-



176

ity candidate cliques meets the characteristics of a Royal Road function as put

forth by Mitchell et al.:

1) All of the desired building blocks are known in advance.

2) The landscape can be varied systematically.

3) The global optimum, and all local optimum, can be enumerated.

With the example graph shown in Figure G.4, I can list all of the building blocks:

C = { {0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3},

{4, 5}, {4, 6}, {4, 7}, {5, 6}, {5, 7}, {6, 7},

{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3},

{4, 5, 6}, {4, 5, 7}, {4, 6, 7}, {5, 6, 7},

{0, 1, 2, 3}, {4, 5, 6, 7}}.

Since I know all of the candidate cliques, I can calculate the fitness for all inter-

esting combinations of building blocks. I vary the fitness landscape by adding or

deleting edges. So, given that I construct a graph such that I know all of the pos-

sible candidate cliques, i.e., building blocks, I am forming Royal Road functions.

Furthermore, I can vary the size and number of cliques such that a graph is not

just a Royal Road function for GAs, but also for the other search heuristics.

As an example, consider the graph in Figure G.5, which has 3 cliques present:

C = {{0, 1, 2, 3, 4, 5, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15}}. Ignoring the encoding,

we see that any cycle in the graph represents a possible group. If the group



177

2

0 1

3

4 5

76

Figure G.4: Example graph, consisting of 2 fully connected cliques of
cardinality 4.

contains duplicate vertex labels or if a dotted edge is traversed, then the group is

not a candidate clique. Upon examination we see that each clique is a “hill”, with

the density of solid edges indicating the “steepness” of the hill. I expect that hill

climbers might get stuck on either of the local maxima.

12

14

15

8 9

10

11

6 2

0

4

3

7 1

5

13

Figure G.5: Example graph, consisting of 3 fully connected cliques of
cardinalities 4, 4, and 8. Actual connections are solid lines and possible
connections are dotted lines.



178

G.6 Conclusions

The work of O’Reilly and Oppacher in developing a GP Schema Theorem [O’Reilly,

1995; O’Reilly and Oppacher, 1995b] is instrumental in proving why a schema the-

orem rooted in the genotype is not sufficient for GP. I do not however support

their claim that such a theorem is not forthcoming and several theorems have

been recently proposed [Rosca, 1997; Poli and Langdon, 1997a]. While I do not

offer such a theory, I do reconcile the empirical observations of GP researchers,

i.e., that GP does build hierarchical solutions by recombining small subtrees, with

the findings of O’Reilly and Oppacher.

The building blocks expressed in GP systems are both in the genotype and

phenotype of the chromosome. By designing multi–level fitness functions, GP

researchers have been implicitly designing Royal Road functionality into their

domains. Indeed several have reported the discovery of the multiple fitness criteria

during the evolutionary process [Koza, 1992; Haynes et al., 1995b].


